学年

教科

質問の種類

数学 高校生

紫で線を引いたところがどうやって出てくるのか分かりません。

13 三角関数の最大・最小 ⑨ 三角関数の最大・最小 例えばysin 20-2sin0+3 では、三角関数の最大・最小 sin0tとおき、2次関数y=-21+3の1の変域での最大・最 小を考える。 133 発展例題 三角関数の最大・最小 1 さい では -15sinė≤1 -Iscos@SICES. なお、tanoはすべて 実数値をとることが できる。 [基本][標準] [発展] 次の関数の最大値および最小値を求めよ。また,そのときの0の値を求めよ。 y=2sin(20. π 3 π +1 ++ 0S-> 第 3章 三角関数 20 着眼 と置き換え、まずsintのとり得る値の範囲を単位 コーチ 円を利用して求める。 ●次のように変形している。 200'sin(-70°) E 5 解答から π π 4 3 π 20- 3 =tとおくと1/30 π 4 075520-20 VA π π 3 5 π 220-13 このとき, 右の図より 1-2 4-3 1 2 70 'S 6 x √√3 - 5 π 3-3 sint≦1 → 1 その π π 5 すなわち 20- = 0= π 3 2 1-√3 ≦2sint+1≦3 → 最大となるのは, sint=1より=のとき 122回(2012ssints1 O 4 ≤20-* 2 0243 sints/2とする 2 違いが多いので注意。 次のように変形している。 12番小泉 √3 -sint≤1 √3 4 最小となるのは, sint= よりのとき 2 -√3≤2sint≤2 -√3+1≦2sint+1 すなわち 20-431-13-1/2 π 5 ≦2+1 = π ==π Meoa6ries v 1-3≤2sint+1≤3 5 = 最大値3 (01/27) 最小値100

回答募集中 回答数: 0
数学 高校生

(3)の解説がわからないです! 精講に球面Cと直線lが異なる2点で交わるときOH<半径とありますがそれも分からないので教えて欲しいです!!

263 うる値の範囲を求めよ. (3) 球面Cと直線1が異なる2点P,Qで変わるようなαのとり 基礎問 262 第8章 ベクトル 168 球と直線 座標空間内に, 球面C:x+y+z=1 と直線があり、直線 1は点A(a, 1, 1)を通り, u = (1, 1, 1) に平行とする.また, a1とする。このとき,次の問いに答えよ. (上の任意の点をXとするとき,点の座標を媒介変数を 用いて表せ (2) 原点Oからに下ろした垂線との交点をHとする.Hの座 標をαで表し,OH を αで表せ. (2) Hは上の点だから, (1) を用いて OH=(t+a, t+1, t+1)と表せる. ここで,OH だから, OH・ü=t+a+t+1+t+1=3t+α+2=0 H 3 2a-2 た 1 t=-Q+2 このとき,t+α= 3 t+1=q+1 よって、(24/2g+q+1) 2a-2 -a+1 3 3 また, OH2=- 9 (29-2)2 =14/01(1-1)+1/2 (a+1)+1/18( (-a+1)2 (デ = (a-1)2 (4) (3) のとき,∠POQ= となるαの値を求めよ. 1 33 2点間の距離の公式 2 (1) A (No, Yo, Z0) を通り, ベクトル u = (p, q, r) に平行な直 a≧1 だから,OH=6l4-1= (3) OH<1 だから 6 3 √(a−1) √A²=\A\ 3 (a-1)<1 : 1≦a<1+k tu √6 2 ◆仮定に a≧1 がある 1 H 線上の任意の点をXとすると OX = (No, yo, zo)+t(p,g,r) とせます. (2)日は上にあるので, (1) を利用すると, OH がαと tで表せます。 そのあと, OH・Z =0 を利用して, t をαで表します. (3) 球面Cと直線が異なる2点で交わるとき OH<半径 が成りたちます. (4)POQ=2をOP・OQ=0 と考えてしまっては,タイヘンです. 0 それは,PとQの座標がわからないので, OP, OQを成分で表せないから です。座標やベクトルの問題では、幾何の性質を上手に使えると負担が軽く なります。 解答 (1)OX=OA+tu=(a,1,1)+(t,t,t)=(t+a, t+1, t+1) :.X(t+α, t+1, t+1) (4)POQ= だから, OH= √2 -(4-1)=- /3 3 a=1+ 2 2 ポイント 中心 (a, b, c), 半径の球面の方程式は 演習問題 168 (x-a)+(y-b)2+(z-c)2=r2 いい 168において, (1)POQ=7 となるようなαの値を求めよ. (2) 線分 PQ の長さが最大になる点Aに対して, 球面C上の動点R をとり, 線分AR を考える 線分ARの長さを最小にする点Ro の座標を求めよ. 第8章

回答募集中 回答数: 0