学年

教科

質問の種類

数学 高校生

(2)で表の波線のところなんで△じゃなくて○なんですか

基本例題 44 連続して硬貨の表が出る確率 次の確率を求めよ。 1枚の硬貨を4回投げたとき,表が続けて2回以上出る確率 (1) 2 1枚の硬貨を5回投げたとき,表が続けて2回以上出ることがない確率 [センター試験] Ip.298 基本事項1 CHARTI OLUTION 3つ以上の独立な試行 (1) は 4つ (2) は5つの独立な試行)の問題でも, 独立なら積を計算が適用できる。また,「続けて~回以上出る確率」の問題では, 各回の結果を記号 (○やx) で表して場合分けをすると見通しがよい。 (1) 何回目から表が続けて出るかで場合分けする。 (2) 「~でない」には余事象の確率 解答 各回について、表が出る場合を◯, 裏が出る場合をx,どちら が出てもよい場合を△で表す。 (1)表が2回以上続けて出るのは, 1回 2回 3回 右のような場合である。 O 4 よって 求める確率は (1)+(1/2) 1+1.(12)=1/1/24 ² ・1+1・ (2) 表が2箇以上続けて出るの は、右のような場合であり, 1回 2回 3 回 4 回 5回 その確率は (2).P+(1/2)・1+1.(1/2) 2.1 ∙1² ・1 19 5 +1)+(1/2)+(1/2)-1/2 よって 求める確率は 5 1-19_13 32 32 = 32 OX OSX × △ MA X₂ A ③ ム 4 × ₂ Q Q O O x × × ○2× X MA X AO O XX X < AO △ 4回 OO AAA ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 (2) 余事象の確率。 301 ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 4回目から続けて出る。 ○○×○○は1回目か ら続けて出る場合に含 まれる。 PRACTICE ... 44 ③ (1) 1枚のコインを8回投げるとき,表が5回以上続けて出る確率を求めよ。 (2) 1回の試行で事象 A の起こる確率をpとする。この試行を独立に10回行ったと きAが続けて3回以上起こる確率を求めよ。 2章 5 独立な試行・反復試行の確率

回答募集中 回答数: 0
数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

青で丸した所3問が質問です!分かる方お願いします🙇‍♀️

【解答上の注意】 ① 答えはすべて解答用紙に書くこと、 ② [1]~[9] は答えのみを書き, [10]は途中の 式または説明を書くこと (答だけでは点数が入 りません). [1] 次の点を通り, d が方向ベクトルである直線の 媒介変数表示を媒介変数を として求めなさい. また, tを消去した式で表しなさい. (1) A(3, 5), (2) A(-2, 3), a = (2, 1) d=(3,-4) [2] 次の2点A,Bを通る直線の媒介変数表示を媒介 変数をとして求めなさい。また, tを消去した式で表 しなさい. (1) A(3, 1), (2) 4(2,-2), (1) A(-3, 4), (2) 4(1, 2), B(7,8) B(-1,3) [3] 次の点を通りが法線ベクトルである直線の 方程式を求めなさい。 P(x,y) n =(5,2) n = (72-8) [4] 次の2直線のなす角日 (0°<0<90°) を求めな さい。 (1) x-2y+7=0,-2) 3x-p-8=0(火) (2) √3x-3y-8=0,(^*)x+√③3y+7=0 (火) (3) =(1-√3)x+7, L この問題を、2直線各々の法線ベクトルを出し、 その大きさと内程からcs①を求めて角度を出そうと解いても。 上手くいかないのですがなぜでしょうか? y=(√3-4)x-8 [5] 次の点Aと直線gとの距離を求めなさい. (1) A(2, 3), g: 3x+y-2=0 (2) A(1, -1), 4 g: y=-=x+12 3 12:0 [7] 次の円の方程式を求めなさい. (1) 原点が中心で, 半径が50円 (x-17)² + (78) ²015 (2) 中心が(-7, 8) で, 半径が 15 の円 (3) 4(3,5),B(11, 11) を直径の両端とする円 [8] ABC の頂点A,B,Cの位置ベクトルをそれぞ れ, a, b, c とするとき、次の直線のベクトル方程式 を求めなさい。 (1) 点Aから直線BC への垂線g (2) 点Aと辺BCの中点を通る直線g (3) 辺CA の中点を通り, 辺ABに平行な直線g 解答で急に声が出てくるのですが、 Pは任意の文字ということではないのですか? 任意の文字なら、 Pの説明も入れるべき だと思うのですが、 [9] 4点O, A, B, C は異なる点とし、 どの3点も同一 直線上にないとします. OA=a, OB=b, OC=C, OP=p とするとき、次のベクトル方程式はどのような図形を表 しますか. 下の (ア) (キ)の中から選んで記号で答 えなさい. (1) p +24|=|p-24| (2) ³p-a-b-c=9 (3) (p-a) (p-b) = 0 (4) (p+a) (p − a) = 0 ABを直径とする円のとも 0 1 1.71 + AP-TP 1B / LAPB = 10⁰ なるのはどうして ですか? (エ) △ABCの重心を中心とする半径90円 (オ)∠AOB の二等分線 (カ) 2点A,Bを直径の両端とする円 (キ) △ABCの重心を中心とする半径3の円 B [10] 原点を0とし, A(4,0), B(34) とします. このとき、∠AOB の二等分線の方程式を求めなさい. た だし、 ∠AOB は鋭角とします .

回答募集中 回答数: 0