学年

教科

質問の種類

数学 高校生

付箋の部分の計算が分かりません。詳しく解説お願いします🙇‍♀️

例 が特別な数列になっていないか考えてみるとよい。 次の数列の一般項 α を求めよ. XL 1, 7, 17, 31, 49, 71, X(2) 2, 3, 5, 9, 17, 3390 考え方 等差数列や等比数列でないなど, 与えられた数列の規則がわかりにくいとき,各項の から {an} as, a2, a3, aA, a5, ......, an-1, an, 手順で行う (芋) {6} 61, b2, b3, b₁, 数列{bm} を {an} の階差数列という. 2 のとき, 1 n-1 a,=a,+(b,+b2+bs+………+=+20 解答 与えられた数列{a} の階差数列を {bm} とする. 1枚 右にあるカードから1 (1){a}:1, 7, 17, 31, 49,71,=b {bm} : 6, 10, 14, 18, 22, =b2 となり,数列{bm} は,初項6,公差4の等差数列になっ ているから,第ん項 b [k] は, bk=6+(k-1)・4=4k+2 したがって,n≧2 のとき www n-1 n-1 (スタート) an a+b=1+Σ(4k+2) k=1 k=1 =1+4•—(n−1)·n+2(n−1)=2n²−1 2 この式は,n=1 のとき, a1=2・1°-1=1 となり、 +an-ab an-a-Σb より注意! an=a+b k=1 n=1のときのチェ a=1 だから, n=1のときも成り立つクをする。 よって, an=2n²-1 SI (2){a}:2, 3, 5, 9, 17. {6}:1.2. 4. 8, 4,8 となり, 数列{6} は, 初項 1. 公比2の等比数列にな っているから、第ん項bk は, bk=1.2k-12-1 したがって, n≧2 のとき www n-1 12 an=a+bk=2+21=2+ k=1 k=1 2-1 よって、 =2"-'+1 1 この式は, n=1のとき, a=2+1=2 となり, は、a=2 だから, n=1のときも成り立つあり、結果は よって, an=2" '+1 Focus 注意! an=a+Σb k=1 等比数列の和 n=1のときのチ をする.

未解決 回答数: 1
数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0