学年

教科

質問の種類

数学 高校生

(2)で少なくともa>0になるのはなぜですか。

第4章 基礎問 86 第4章 極限 49 関数の極限 (II) 次の式をみたすもの値を求めよ。 (1)/ lim 1-2 av '+2x+8+ 3 x-2 = 4 (2)/lim{vr2-2x+4-(ax+b)}=0 18 (大) mil =lim (1-a)-2(1+ab)x+4-b² →∞ 精講 このタイプもIIB ベク82 で学習済みですが, ポイントになる考え 方は,不定形は 「極限値が存在しない」のではなく, 「存在する可能 =lim- 8 87 (2) lim-2x+4+∞だから、 与式が成りたつためには、少なく P とも,a>0.このとき lim (-2x+4-(ax+b)) →∞ =lim 811 {v-2x+4-(a+b){-2x+4+(x+b)) x²-2x+4+(x+b) -2x+4+ax+b 4-62 (1-a)x-2(1+ab)+· I 2. 4 ・① 1- + b +a+- I (x→ +∞ より 0 と考えてよい 性は残っている」 ということです. (1)では, →2のとき分母→0. このとき, 「分子→0以外の定数」 ならば,極 は∞となるので、2にはならない。よって、極限値が4になるとす れば,「分子→0」 となる以外に可能性は残されていない この極限値が0になるので、1-60,a>0より1 ①式=-(1+b)=0 このとき :.b=-1 逆に,=1,b=-1 のとき, 3 (与式の左辺) = lim = 0 1-0 √x²-2x+4+x−1 ただし、この考え方は必要条件になるので,最後に吟味(=確かめ) を忘れな いようにしなければなりません。 となり確かに適する. 吟味 A ポイント 不定形は, 極限値が存在しないと決まっているのでは

解決済み 回答数: 1
数学 高校生

なぜ、部分分数分解をする時、赤い丸のところのように分子の次数を分母の次数より1下げるのですか?回答よろしくお願いします。

次の不定積分を求めよ。 2x2-x-2 -dxh (1) x+1 (2) S dx (x+1) (2x+1) (3) a √ x²(x-1) dx 思考プロセス (1)~(3) いずれも f'(x) f(x) -の形ではない。 次数を下げる (1)ReAction(分子の次数) ≧ (分母の次数)の分数式は、除法で分子の次数を下げよ IB 例題 17 (2)(3)分母が積の形 (x+1) (2x+1) +1)(2x int (2) 1 (3) x² (x-1) 八 数分解 a + x+1 2x1 子 (x)=xh(x)}(水)1 a, b, c の値を求める。 ax+b x2 C + a b + C x-1 x + x² x-1 Action » 分数関数の積分は、子の次数を下げ, 部分分数分解せよ 2 (1) S 2-x-2 dx = √(2x-3+x1)dx x 2 -3x + log|x +1+C_3 4 章 分子を分母で割ると 商2x-3, 余り1 不定積分 IIB 1 IIB 61 (x+1)(2x+1) はらうと a b + とおいて, 分母を 部分分数分解 x+1 2x+1 α(2x+1)+6(x + 1) = 1 (2a+b)x+a+6-1=0 係数を比較すると,a=-1,6=2 より dx (x+1)(2x+1) =+ S ( x + 1 + 2x²+ 1 ) dx +1)αx -log|x + 1|+log|2x + 1| + C 2x+1 =log| +C x+1 IB 61 (3) 1 a b C = + + とおいて, 分母をはら x²(x-1) x x² x-1 うと ax(x-1)+6(x-1)+cx2 =1 (a+c)x2+(-a+b)x-6-1 = 0 係数を比較すると,a = -1, b = -1, c = 1 より S dx x(x-1) = S ( = = = = = 1 + x2 x-1 11) dx == -log|x|+ x 1/1/+1001+0 +log| 142次の不定積分を求めよ。 1 +log|x-1|+C +C pal (2a+b)x+α+6-1 = 0 はxについての恒等式で あるから f2a+b=0 la+6-1=0 (1) S 2 -dx 2x+1 =2.1/ = 2.1 log|2x+1|+C 部分分数の分け方に注 意する。 xについての恒等式であ るから fa+c=0 {-a+b=0 l-b-1=0 yolx (E) dx 3x+4 dx (3) rr+12

解決済み 回答数: 1
数学 高校生

数2の高次方程式の問題です。 四角で囲んであるところの意味がわかりません。

基本 例題 63 2重解をもつ条件 00000 3次方程式 x+(a-1)x2+(4-α)x-4=0が2重解をもつように、 実数の 定数αの値を定めよ。 CHART & SOLUTION 3次方程式の問題 因数分解して (1次式)×(2次式)へもち込む x=1 を代入すると成り立つから, 与えられた方程式は (x-1)g(x)=0g(x)は2次式]の形となる。 ここで,「2重解をもつ」 のは次の2通りで、 場合分けが必要。 [1] 2次方程式g(x)=0が1でない重解をもつ。 [2] x=1が2重解→ g(x) = 0 の解の1つが1で,他の解は1でない。 解答 f(x)=x+(a-1)x2+(4-a)x-4 とすると 基本 61 f(1)=1+(a-1)・12+(4-α) ・1−4=0 よって, f(x) は x-1 を因数にもつから f(x)=(x-1)(x2+ax+4) 1 a-1 4-a -4 1 a 4 1 a 4 0 ■ゆえに, 方程式は (x-1)(x2+ax+4) = 0 したがって x1 = 0 または x2+ax+4= 0 この3次方程式が2重解をもつ条件は,次の[1] または [2] が成り立つことである。 [1] x2+ax+4=0 が1でない重解をもつ。 判別式をDとすると D=0 かつ 12+α・1+4=α+5=0 D=α2-16=(a+4)(α-4) 土でも重解 D=0 とするとα=±4 これはα+5≠0 を満たす。 [2] x2+ax+4=0 の1つの解が1, 他の解が1でない。9 x=1 が解であるから よって a+5=0 「このとき x2-5x+4=0 12+α・1+4=0 ゆえに a=-5 よって (x-1)(x-4)=0 これを解いて x=1,4 したがって他の解が1でないから適する。 別解 次数が最低の について整理する方 因数分解してもよい。 x-x2+4x-4+α(3 (1)(x2+4)+ax (x-1)(x2+ax+4 inf. 次のように考 よい。 [2] x2+ax+4=0 1β(1) の と係数の関係か 1+β=-a, β=4 は適する [1], [2] から, 求める定数 αの値は このとき a= a=±4,-5

解決済み 回答数: 2
数学 高校生

赤マーカーの部分がなぜこうなるのかわかりません。※ (①〜④)の部分 教えて下さい🙇‍♂️

7 極限が存在するように定数を定める 2x2+ax+a+1 (ア) lim- =bと書けるとき, α = b= 」である. x-2 x²+x-6 (中部) (イ) αを実数とする. a= ] のとき, lim (4x'+x+ax)は有限な値 」をとる. →+∞ (関西大 社会安全, 理工系) 分数式の極限が存在するとき 分母0のとき, 分子 分母 は分子→0でなければ発散する。つまり。 分母 (分母→0で →有限のとき,分子=分子 分数式の極限が存在するとき, 分母→0なら分子→0となっていなければならない. 分子 -×分母→有限×0=0, と説明することもできる 分母 精密に調べる前に (イ)では,“分子の有理化”をするが,変形する前にαの符号を調べておこう。 lim√42+xなので, a≧0のときは与式は∞に発散してしまう。よって&<0でなければならな X100 このときはもは 00-00 不定形では? いことがまず分かる.また,x→∞を考えるときはとしてよい.x2=|x|=xなどとすることが できる. ■解答 SMART (ア) →2のとき, 分母=x²+x-6→4+2-6=0であるから, 分数式の極限値 bのとき,分子→0でなければならない. 覚えない よって, 2・22+α・2+α+1=0であるから, a=-3 2x2+ax+a+1 2x²-3x-2 このとき, (x-2) (2x+1) x2+x-6 x2+x-6 (x-2)(x+3) 2x+1 5 (2 =1 x+3 x-2 5 =1 ← <3a+9=0 する ←分母分子とも, x=2のとき0 なので,ともに2を因数にも (因数定理) r-2で約分され て不定形が解消する. (イ) lim√42+x=+∞であるからa < 0 である. →+∞ (42+x)-(ax)2 √2+x+ax=- √√4x²+x-a ax (4-a2)x²+x (4-a²)x+1 ( 参照. √√4x²+x+ax の分子を有理化 = == √√4x²+x-ax 4+ a ・① 分母が0以外の値に収束するよ IC うに、分母分子をxで割った。 ④ のとき,①の分母→2-α(0) となるから, ①が有限な値に収束する とき, 4-α2=0 1 a <0によりα=-2であり, lim ① = x178 √A 2+2 -a 4 4-α>0のとき ①→∞ 4-2<0 のとき ①→-8

解決済み 回答数: 1
1/270