学年

教科

質問の種類

数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25 組分けの問題 (2) ・組合せ 0000 9人を次のように分ける方法は何通りあるか。 (1)4人,3人, 2人の3組に分ける。 (2)3人ずつ, A, B, C の3組に分ける。 (3) 33組に分ける。 る 東京 (4)5人、2人, 2人の3組に分ける。基本21 指針 組分けの問題では,次の① ② を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか 「9人」は異なるから, 区別できる。 ...... 特に,(2) と (3) の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, C の区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると,異な る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める方 法の数。 (4) 2つの2人の組には区別がないことに注意。 なお,364 基本例題21との違いにも注意しよう。 (1)9人から4人を選び, 次に残った5人から3人を選ぶ 解答 と,残りの2人は自動的に定まるから, 分け方の総数は 9C4X5C3=126×10=1260 (通り) (2) Aに入れる3人を選ぶ方法は 3-(A-8) C3通り Bに入れる3人を, 残りの6人から選ぶ方法は 6C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は 9C3 × 6C3=84×20=1680 (通り) 2人,3人,4人の順に選 (1) 八郎(S) んでも結果は同じになる。 4×53×2C2としても 同じこと。 (2),A,B,Cの区別をなくすと、 同じものが3!通 次ページのズーム UP 参 りずつできるから、分け方の総数は (9C3 × 6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は 9C5×4C2 B,Cの区別をなくすと、 同じものが2! 通りずつでき るから,分け方の総数は (9C5×4C2)÷2!=756÷2=378 (通り) 照。 <次ペ 本

回答募集中 回答数: 0
1/1000