学年

教科

質問の種類

数学 高校生

緑色で丸で囲っているところについて。なぜ1≦3分の4aとなっているのにx=3分の4aはダメなんですか?

355 64 基本 例題 223 係数に文字を含む3次関数の最大・最小 00000 すなわち [2] YA [2] [2] は区間に極大値をと a³ α を正の定数とする。 3次関数f(x)=x-2ax2+αx0≦x≦1 における最大 立命館大 ] 基本 219 重要 224 4 るxの値を含み, 極大値 が最大値となる場合。 で最大となり 0 a 1 a 3 値 M (α) を求めよ。 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう ya になる (原点を通る)。 ここで,x= =/1/3以外にf(x)=f(10/28) ( 0 よって、1/3 α (1/3<α) が区間 0≦x≦1に含まれるかどうか a a 3 で場合分けを行う。 満たすx (これをαとする) があることに注意が必要。 <a a f(x)はx=/10/ M(a)(0) 4 [3] 0< <1/3a<1 すなわち 0<a<212 のとき, f(x)はx=1で最大となり M(a)=f(1) 以上から f'(x)=3x²-4ax+α2=(3x-a)(x-a) 解答 f'(x)=0とすると x= a 3. a まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 a>0であるから, f(x) の増減表は次のようになる。 <a>0 から a x a ... 3 0<<a f'(x) + 0 0 +1 (0)\-(E)\ 0<a<12/13<a のとき [3] 最大! a2-2a+1 a jal [3] は区間に極大値をと るxの値を含むが、 区間 この右端の方が極大値より も大きな値をとり, 区間 の右端で最大となる場合。 10 a a 4 3 M(α)=f(1)=α-2a+1 24≦3のとき M(a)= このとき 大阪 <f(1)=13-2a・12+α2.1 =a²-2a+1 f(x) 極大 (0) ここで,f(x)=x(x2-2ax+α²)=x(x-α)からもう (*) 曲線y=f(x) と直線 x= (3)=(-a)=7a³ 4 a³, f(a)=0 OL-13+TS =1/3以外にf(x) = 27 を満たすxの値を求めると, 3次関数の対称性の利用 目 4 検討 p.344 の参考事項で紹介した性質, 3 を用いて,f(x)=2742 を満たすx= 1/3以外のx の値を調べることもできる。 2つの極値をとる点を結ぶ線分の中点(つまり,変曲点) の y=f(x) x 座標は x=- -2a 2 3.1 3 点において接するから, f(x)/(x) 4 f(x)= =270から (1 x³-2ax²+a²x-7a³=0 4 で割り切れる。このこと を利用して因数分解する とよい。 S ゆえに (x-1)(x-1/4)-10-19 1102a a a 15 3 x= であるから X= 15 4 1 0 よって, f(x) 0≦x≦1における最大値 M (α) は,次のよ うになる。 01 9 a 4 3 4 a [1] 1<1/3 すなわち 4>3のとき 1 0 3 f(x) はx=1で最大となり M(a)=f(1) <指針_ a2-2a+1 -最大 ★ の方針。 [1] は区間に極値をとる xの値を含まず 区間の 右端で最大となる場合。 0 a a x 3 a 3 2 で, a+ から、 3 11/24)となる。 なお, p.344 で紹介した性質を用いる方法は,検算で使う程度 としておきたい。 で 0.0 6章 6 最大値・最小値、方程式・不等式 ことしないよ 練習 x3 0223 は正の定数とする。 関数f(x)=- x²+ 3 ax²- ピー2ax+αの区間 0≦x≦2におけ 3 p.368 EX142 る最小値 m (a) を求めよ。

未解決 回答数: 1
数学 高校生

ピンクのマーカーで目印をつけているところが、どういう事なのか分かりません。 どこをどうとって解と係数の関係があるのでしょうか?

290 本 例題 184 3次関数の極大値と極小値の和 αは定数とする。 f(x)=x+ax²+ax +1 が x=α, B (a</) を る。 f(a)+f(B)=2のとき、定数αの値を求めよ。 CHART & SOLUTION 3次関数f(x)がx=α,β で極値をとるから、α.8は2次方程式(x) = 0 しかし、f(x) = 0 の解を求め、それを(w)+f(B)=2に代入すると計算が増 f(a)+f(8) はαとβの対称式になるから まと 数学Ⅱ p.283 のである。 の特徴 3次 20 αβの対称式 基本対称式α+β, αβ で表されるに注目して変形。・ なお、α+ ß,aβ は,f(x)=0 で解と係数の関係を利用するとαで表される。 解答 f'(x) =3x2+2ax+α f(x) が x=α, β で極値をとるから, まず、f(x)が極値を f'(x) = 0 すなわち 3x2 +2ax+α=0 は異なる2つの実数解 α, β をもつ。 つようなαの範囲を めておく(基本例題1 (1) と同様)。 ①の判別式をDとすると D = a² -=a²-3a=a(a-3) D> 0 から a<0, 3<a ② また、①で,解と係数の関係により 2 a+b=-ga,ab=- ここで f(α)+f(B)=α+ax²+aa+1+3+a2+aß +1 =(ω°+β)+a(a2+β2) + α (a +β) +2 =(a+B)-3aB(a+B)+α{(a+B)2-2aß}+α(a+β)+2 α³+B³ =(a+B)-3aB(a+B), a2+B2=(a+B)^2aB ← α, β を消去。 +a(-a)-2a)+(-a)+2 -7a-4a²+2 (a)+f(B)=2から 12/17/20°+2=2 よって 2a3-9a2=0 すなわち a²(2a-9)=0 9 ②を満たすものは a= inf. この問題では極大値 と極小値の和f(a)+f(B) を考えた。 極大値(もしく は極小値)を単独で求める 必要がある場合に、 極値の x座標であるα (もしくは β) の値が複雑な値のとき は EX 148 を参照。 RACTICE 184Ⓡ 関数 f(x)=2x+ax²+(a-4)x+2の極大値と極小値の和が6であるとき、定数。 の値を求めよ。 [類 名城大

解決済み 回答数: 1
数学 高校生

微積分の問題で(2)についてです。Y=X^3-4X^2+4Xの極大値(2/3,32/27)をY=KXに代入して求めた傾き(K)よりも小さけ れば共有点を2個もつと考えたのですが間違っていました。どこで間違えてるのか教えてほしいです🙏🏻

微分法・積分法 3次関数のグラフ a=0, b=0のとき y=x³ y=3x で x=00 a=0, x=0のときは0となるから、Cの形はGである。 b=1のとき y=x+x Cの概形はG2 である。 AB y=3x2+1 で すべてのxについて>0となり、増加関数であるから AC a=-2.6=0のとき y=x-2x y=3x²-4x=3x(x-1) 4 3=0より x=0.1/2 0 となりの増減表は次のようになる。 XC + 0 - y' 0 1430 + 32 y 27 よって、Cの概形はGである。 A D () a=-4,6=4のとき y=x-4x2+4x y' =3x²-8x+4 = (x-2)(x-2) y=0より x= 2 3' 2 となり、yの増減表は次のようになる。 A G, G2 とも増加関数であるが、 (ア)ではC上の原点における接線 この傾きが0となるから, G. G2 のうちGが正しいグラフとな る。 B 曲線 y=f(x) 上の点(a.f (a)) における曲線の接線の傾きは f'(a) C (ア)の場合と違って、x軸に平行 となる接線が引けないような増 加関数であるから, G. G2 の うち G2 が正しいグラフとなる。 x ... y' 3 y + 23037 .... 2 0 + E 0 よって、Cの概形は G3 である。 (ア)~(エ)から、G1~G の曲線Cの概形の組合せは②となる。 |(2) a=-4,b=4 のとき y=x4x2+4x 上の原点における接線の 方程式はx=0 のとき,y'=4であるから F y=4x 右の図より求めるkの値の範囲は 0<k<4 2 y 2 y=x-4x²+4x/ y=4x y=kx 0 2 x 増減表からCは原点でx軸に 接している。 E 増減表から、Cは点 (20) x に接している。 F 接線の方程式 曲線 y=f(x) 上の点 (a.f (a)) における曲線の接線の方程式は y-f(a)=f'(a)(x-a) Point 2=0のとき=4(60)をまから 傾き ここを代入して (1) では、 導関数の符号を把握して3次関数のグラフの増減が正しく理解でき |ているかが問われている。 (2)では,曲線 y=x4x²+4x は原点を通りx と接することがわかっている。そのことを利用して直線 y=kxとの共有 点の考察をしていけばよい。 G 直線 y=kx の傾きが0より大 きく4より小さいとき、 曲線 y=x-4.x +4x と直線 y=kxx>0における共有 点は2個となる。 -79-

解決済み 回答数: 1
数学 高校生

この極大値と極小値求めてるやつって、どこに代入してるんですかー、? 全然同じ数字になりません

72 定積分で表された関数の極値と最大 (1) f(x) = ∫(-3t+2at+3b) dt の両辺をxで微分して -1 f(x)=3x²+2ax+3b A (2)関数 f(x) は x=-1 および x=3 で極値をとるから, f'(x) = 0 は A a を定数とするとき, xで微分すると,g(x)となる ⒷB f(x)=0 が関数 f(x)が で極値をもつための必要 あることを利用する。 x=-1, 3を解にもつ。 ← B 3a a =-1+3 解と係数の関係により -b=(-1)x3 これより α = 3,b=3 このとき f(x)=3x²+6x+9=-3(x+1)(x-3) また f(x)=(3+6t+9)dt = |-c+30°+9t_ 3t2. -1 =-x+3x2+9x+5 であるから, 関数 f(x) の増減表は次のようになり, x=-1 および x=3で極値をとり、適する。 C したがって a=31, b=31 X -1 ... 3 ... f'(x) 0 + 0 極小 f(x) 7 極大 D 0 32 ☆ よって, f(x)は,x=3のとき極大値5をとり, x=-1 のとき極小値」2 a=3,b=3 が十分条件でお ことを確かめた。 D a 定数とするとき Lg (0) dt = 0 a,b,cは また、 (x-a)(x- f(x)=x となる。 ⑩ + y=f(x) a 2次方程式 f(x) 極値 O の解 以下 (1) p>0. 2次方程 の a+ ② a+ また、 の a< さらに, であることを利用して, 極 (0 (3) (2)よりy=f(x) のグラフは, 右の図 のようになる。 YA f(-1)=(-31+6+ の 32 y=f(x) =0 0≦x≦k において, M = 32 となるよ と求めてもよい。 0 0 ② a こうなんの値の範囲は≧3 Point (2) p<0. 次に,f(x) = 0(x>0) となるxの値 を求めると (1)と同 5 0 3 5 x である の -x +3x²+9x +5 = 0 x³-3x²-9x-5=0 (x+1)(x-5)=0 Point の x>0より x = 5 ( a 図り,0≦x≦において,m≧0となるようなkの値の範囲は≧52 Point 定義域が変化する関数の最大値、最小値を考えるときは,グラフをかい て考えるようにしよう。 また、3次関数 f(x) がx=αで極小 (大) 値 をとるとき,f(x)-f(a) は (x-α) で割り切れる性質を利用して,極 小 (大)値と同じ値をとる x = α以外のxの値を求めることができる。 解 合 f(x) f(x)=x 130

解決済み 回答数: 3
数学 高校生

この問題がわかりません 解説お願いします🙇‍♀️

重要 例題 218 4次関数が極大値をもたない条件 00000 関数f(x)=x4-8x3+18kx2 が極大値をもたないとき, 定数kの値の範囲を求め よ。 XAS 4次関数 f(x) x=pで極大値をもつ [福島大] 基本 211,214 x Þ f'(x) + 0 f(x) 極大 \ x=pの前後で3次関数f(x)の符号が正から負に変わる であるから、f'(x)の符号が「正から負に変わらない」条件を 考える。 3次関数f(x) のグラフとx軸の上下関係をイメー ジするとよい。 なお、解答の右横の図はy=x(x2-6x+9k) のグラフである。 f'(x)=4x-24x2+36kx=4x(x2-6x+9k) f(x) が極大値をもたないための条件は, f'(x) = 0 の実数 解の前後でf'(x) の符号が正から負に変わらないことであ ある。このことは, f'(x)のx3の係数は正であるから, 3次 方程式 f(x) = 0 が異なる3つの実数解をもたないことと 同じである。 k≥1 y k>1 k=1 347 3 x 解答 f'(x) = 0 とすると x=0 または x2-6x+9k=0 よって, 求める条件は,x2-6x+9k=0が k=0 y [1] 重解または虚数解をもつ [2] x=0 を解にもつ [1] x2-6x+9k=0 の判別式をDとすると D≤0 1-k≤0 35 12121=(-3)2-9k=9 (1-k) であるから 求め方は よって k≧1 [2] x2-6x+9k=0に x=0を代入すると k=0 したがって k=0, k≧1 おける関数の 6 x I 一般に, 4次関数 f(x) [4次の係数は正] に対し、f'(x)=0 参考 [4次関数の極値とグラフ] 3次方程式で,少なくとも1つの実数解をもつ。 その実数解をαとし、他の2つの解が実数 あればβ, y とする。このとき, y=f(x) のグラフは、次のように分類できる。 特に, 極大値を るのは①の場合だけである。 あり ける 小が入れ替わる)

未解決 回答数: 0
1/94