学年

教科

質問の種類

数学 中学生

教えてくださった方フォローします!教えてください🙏🙏🙏

応用 例題 6 考え方 6人を次のように分けるとき, 分け方は何通りあるか。 (1) A,B,Cの3つの部屋に2人ずつ分ける。 (2) 2人ずつの3つの組に分ける。 (2) は, (1) 部屋 A, B, C の区 別がない場合である。 {a,b} {c, d} {e, f} ↓ ↓↓ A B C (1) での A CO B 分け方 たとえば, (2) での1つの分け方 {a,b},{c,d}, {e, f} におい て、この3つの組に A, B, Cの 名前をつけると, (1) での分け方 が作られる。 (2) での1つの分け B A C 10 方から, (1) での分け方が何通りずつ作られるか考える。 (1) 部屋Aの2人の選び方は C2通りある。 部屋Bの2人の選び方は残りの4人から選ぶので2通り 部屋 A, B の人が決まれば、残りの部屋Cの2人は決まる。 よって, 分け方の総数は,積の法則により 15 6C2×4C2=15×6=90 90 通り (2) (1) で, 同じ人数の組 A,B,Cの区別をなくすと, 3! 通り ずつ同じ分け方ができる。よって,分け方の総数は 90 90 3! 6 = =15 答 15通り 【?】 (1) Aに1人, Bに2人, Cに3人と分ける。 20 (2)1人,2人,3人の3つの組に分ける。 という問題の場合 (2) において (1) の答えを3! で割る必要があるだろ うか。 また,それはなぜだろうか。 8人を次のように分けるとき, 分け方は何通りあるか。 (1) A,B,C,D の4つの組に、2人ずつ分ける。 25 (2) 2人ずつの4つの組に分ける。 (3)3人,3人, 2人の3つの組に分ける。 Links イメージ 解答 目標 練習 33 5 第1章 場合の数と確率 海 洋 2

回答募集中 回答数: 0
数学 中学生

教えてくださった方フォローします!練習24.25.26教えてください!!

同じものを繰り返し使ってもよい場合の順列の総数が求められるよう になろう。 (p.31 26 ここまでは,異なるものだけを並べる順列を考えてきた。ここでは, 同じものを繰り返し使ってもよい場合の順列を考えてみよう。 5 * 練習 記号○と×を, 重複を許して O × × 24 5個並べる。 この順列の総数を, 積の法則を用いて求めよ。 2通り2通り2通り 2通り 2通り 一般に,異なる種類のものから重複を許してr個取って並べる順列 をn個からr個取る 重複順列という。 重複順列では, r≦n とは限 10 らず, rn であってもよい。 上の練習 24 は, 2個から5個取る重複 順列である。 練習 24 から,一般に,重複順列の総数について次のことがいえる。 重複順列の総数 n個からr個取る重複順列の総数はn" 15 980008 1番目 2番目 3番目 番目 通り 通り 通り 通り 練習 3個の文字 a,b,c を, 重複を許して次の個数だけ1列に並べるとき, 25 何通りの文字列が作れるか。 (1) 2個 (2) 415 練習 3人の生徒が, 赤, 青, 黄, 緑の4色の中から好きな色をそれぞれ 1色ずつ選ぶ。 選び方は何通りあるか。 26 20 * 「重複を許す」 とは、同じものを繰り返して使ってもよいということである。 目標 第1章 場合の数と確率

解決済み 回答数: 1