学年

教科

質問の種類

数学 高校生

(2)でなぜこの3つに場合わけするのか、基準がよく分からなかったので教えてください。(なぜ-2以下となるのか、など)

★★ 最大値と最小値, xの範囲 より √√1-2 (L える。 ( +yに代入すると、 になりすぎる。 件を用いよ (イ) x < 0 のとき,与式は (x+4)(x-2)=0より |- (2x+4) ( (1)(ア)x20 のとき, 与式は x (x4)(x+2)=0より 116 絶対値記号を含む方程式 次の方程式を解け 方程式 (1)-2/x-8=0 (2)|x-4] = |2x+4| 場合に分ける Action 絶対値記号は, 記号内の式の正負で場合分けして外せ 35 x4 ( 1-(x²-4) ([ (2)|x-4|= |2x+4|= (2x+4 ☆☆ のとき) のとき) のとき) 」のとき) まとめると,どのように 場合分けすればよいか? x²-2x-8= 0 3 x0 のとき \x\ = x 章 x = -2,4 9 であるから x=4 x2+2x-8= 0 x0 であるから (ア)(イ)より x = ±4 (別解)x2 = x2 であるから,与式は x= -4, 2 x= -4 ■場合分けの条件を満た すかどうか確かめる。 x < 0 のとき |x| =-x 場合分けの条件を満た すかどうか確かめる。 以上がより 2次関数と2次不等式 |x|-2|x|-8=0 より (|x|-4)(|x|+2) = 0 小さいか の値の範囲 判別式を考 数xが存在 であるから|x|=4 よって x = ±4 0x +2が0になることは ない。 場だかけ X-420 x²-2x-80より (2) (ア)x≧2 のとき,与式は x2-4=2x+40 x²-4 (x+2)(x-4) = 0 = x≧2より x=4 D=0 (イ) -2<x<2 のとき,与式は -(x2-4)=2x+4 2x+4 |2x+4| = 次方程 2x=0より x(x+2)=0 2次方 2<x<2より x=0 =0が この重 (ウ) x≦2 のとき, 与式は x2-4 = -(2x+4) x2+2x=0より x(x+2)=0・・・レー (大+2(x-2) x²-4x-2, 2≤ x) x+4 (-2<x<2) (x+2)(x-2) (0 1-(2x+4) (x <-2) であるから x≧2, -2<x<2, x-2の3通りに場合 分けする (x-2) (ア)~(ウ)より x=-2, 0,4 x≦2より x=-2 (別解) 与式より x2-4 = ±(2x+4) (ア) x2-4 = 2x+4 のとき |x2-2x-8=0 (x-4)(x+2)=0 より x=-2,4 (イ) x2-4-(2x+4) のとき x(x+2) = 0 より x = -2,0 (ア)(イ) より x=-2, 0,4 116次の方程式を解け。 (1)x2x-1-5=0 x2+2x = 0 |A|=|B|⇔A=±B であることを利用する。 '(2) | x + 3x + 2 = |2x+4|

回答募集中 回答数: 0
1/1000