学年

教科

質問の種類

数学 高校生

(2)でなぜこの3つに場合わけするのか、基準がよく分からなかったので教えてください。(なぜ-2以下となるのか、など)

★★ 最大値と最小値, xの範囲 より √√1-2 (L える。 ( +yに代入すると、 になりすぎる。 件を用いよ (イ) x < 0 のとき,与式は (x+4)(x-2)=0より |- (2x+4) ( (1)(ア)x20 のとき, 与式は x (x4)(x+2)=0より 116 絶対値記号を含む方程式 次の方程式を解け 方程式 (1)-2/x-8=0 (2)|x-4] = |2x+4| 場合に分ける Action 絶対値記号は, 記号内の式の正負で場合分けして外せ 35 x4 ( 1-(x²-4) ([ (2)|x-4|= |2x+4|= (2x+4 ☆☆ のとき) のとき) のとき) 」のとき) まとめると,どのように 場合分けすればよいか? x²-2x-8= 0 3 x0 のとき \x\ = x 章 x = -2,4 9 であるから x=4 x2+2x-8= 0 x0 であるから (ア)(イ)より x = ±4 (別解)x2 = x2 であるから,与式は x= -4, 2 x= -4 ■場合分けの条件を満た すかどうか確かめる。 x < 0 のとき |x| =-x 場合分けの条件を満た すかどうか確かめる。 以上がより 2次関数と2次不等式 |x|-2|x|-8=0 より (|x|-4)(|x|+2) = 0 小さいか の値の範囲 判別式を考 数xが存在 であるから|x|=4 よって x = ±4 0x +2が0になることは ない。 場だかけ X-420 x²-2x-80より (2) (ア)x≧2 のとき,与式は x2-4=2x+40 x²-4 (x+2)(x-4) = 0 = x≧2より x=4 D=0 (イ) -2<x<2 のとき,与式は -(x2-4)=2x+4 2x+4 |2x+4| = 次方程 2x=0より x(x+2)=0 2次方 2<x<2より x=0 =0が この重 (ウ) x≦2 のとき, 与式は x2-4 = -(2x+4) x2+2x=0より x(x+2)=0・・・レー (大+2(x-2) x²-4x-2, 2≤ x) x+4 (-2<x<2) (x+2)(x-2) (0 1-(2x+4) (x <-2) であるから x≧2, -2<x<2, x-2の3通りに場合 分けする (x-2) (ア)~(ウ)より x=-2, 0,4 x≦2より x=-2 (別解) 与式より x2-4 = ±(2x+4) (ア) x2-4 = 2x+4 のとき |x2-2x-8=0 (x-4)(x+2)=0 より x=-2,4 (イ) x2-4-(2x+4) のとき x(x+2) = 0 より x = -2,0 (ア)(イ) より x=-2, 0,4 116次の方程式を解け。 (1)x2x-1-5=0 x2+2x = 0 |A|=|B|⇔A=±B であることを利用する。 '(2) | x + 3x + 2 = |2x+4|

回答募集中 回答数: 0
数学 高校生

数IIの軌跡と方程式の問題です 青色のマーカーの「逆に」という部分が どこから導き出せたか分かりません 2問同じところで分かりません 教えてください🙏

られた条件を付 を求める 本 例題 98 曲線上の動点に連動する点の軌跡 ののののの 点Qが円x+y=9 上を動くとき、点A(1,2)とを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 p.158 基本事項 CHART & SOLUTION る。) ものを除く 連動して動く点の軌跡 9 点Pが 。 s2+t2=9 1・1+2s x= 2+1 1+2s y= ラ 3 2+1 よって S= ラ -31-1,1-31-2 t=3y-2 つなぎの文字を消去して,x だけの関係式を導く ****** 動点Qの座標を(s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件をs, を用いた式で表し,P,Qの関係から, s, tをそれぞれx,yで表す。 これをQの条件式に 代入して, s, tを消去する。 3章 解答 Q(s, t), P(x, y) とする。 Qは円x2+y2=9 上の点であるから Pは線分AQ を 2:1 に内分する点であるから 13 YA 3 軌跡と方程式 ① (s,t) 1.2+2t 2+2t A (1,2) 13. 0 x 3 2 こんに内分 P(x,y) -3 .y) これを①に代入すると3x21)+(3v=2)=9 つなぎの文字 s, tを消 2 2 9 ゆ x- + V =9 4 3 + melli 去。 これにより,Pの条 ugetug件(x,yの方程式)が得 られる。 よって(x-/1/3)+(y-2/28)2-4 =4 ***** (2) 以上から、 求める軌跡は 中心 (1/3 2/23 半径20円 P(y)とがいて POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) =0 上の点であるからf(s, t) = 0 したがって,点Pは円 ②上にある。 逆に円 ②上の任意の点は、条件を満たす。 上の図から点Qが |円 x2+y2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない かなを満た妨方程式で導いたのだから、Pはその方程式の ・表札・図形 ほあ ② s, tをそれぞれx, yで表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。

回答募集中 回答数: 0
化学 高校生

芳香族化合物の問題。 書いてあるのは問題と解説を写したものです。 何個か赤字で分からない点を挙げましたが、正直この問題全て理解できていないので、初めから細かく教えていただければと思います。 よろしくお願いします。

試験管にサリチル酸 6.9g、メタトル32mlおよび少量の濃硫酸を入れて 反応させた後、内容物を炭酸水素ナトリウムの飽和水溶液に加えたところ、 二酸化炭素が発生するとともに、サリチル酸メチル 6.08gが得られた。 ②で得られたのは このとき、サリチル酸メチルの収率[%]はいくらか。 ただし、メタノールは反応に十分な量である。 サリチル酸ナトリウムではないの? OH CH-of COOH ✓ off H2O COOCH3 ①のようにエステル化された後、未反応 の サリチル酸はNaHCO3と反応して なぜ十分なメタノールがあるのに 塩(サリチル酸ナトリウム)となり、水層に分離される。 サリチル酸は反応しきらない? OH OM NaHCO3 CO2 + H2O. COONa coot サリチル酸(分子量138)とサリチル酸メチル(分量132)・物質量は、 6.9gx 0.05ml 138g Imal 6.08g x 0.04mal 132g よって収率 は、 0.04 600.05 収率とは、化学反応式から 計算した生成物の量に対する 実験で得られた生成物の量 実際の生成物 なぜ 実際の生成物 算出した生物 でなく ? 実際の反応物 ×100 80%

回答募集中 回答数: 0
数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
1/1000