学年

教科

質問の種類

現代文 高校生

この史学理論 遅塚ただみさんの文なのですが内容が難しくて理解できません。分かりやすく説明して欲しいです

ト的な 本文全 記号で答え ゆるできごとを ◆読み比べ 史学相 ev. 考えの の基礎 しょうぞう 「野家氏の見解の哲学的基礎は、大森荘蔵氏の「過去とは 「想起なり」という有名な命題(これを過去想起説と言う)でい ある。大森氏によれば、過去は知覚できないのだから、過去 は想起されるだけなのだと言う。この説が歴史学に当てはま るならば、野家氏の言うように、過去の事実は想起され物語っ られるだけだという、物語り論的歴史理解が成り立つであろ う。しかしながら、われわれが事実の種類を弁別したときに すでに明らかにしたように、構造史上の事実をはじめとする 「揺らがない」事実は、この過去想起説に当てはまらないの である。 歴史の見 一見すると、大森=野家説の言うように、われわれは過去 を直接に知覚することはできないように見える。しかしなが 野家 二七一ページ参照。 2 大森藏 一九二一年~一九九七年。哲学者。 3 構造史 歴史を物語りによってではなく表れてくる構造によって明 らかにする記述方法。 こうゆう 論理的な文章読み比べ◆ 史学概論 3 かたられること ら、例えば、一九二〇年十月一日現在の日本の第一回国勢調 ?査の結果だの、一九四九年一月二十三日の日本の総選挙にお ける各党の候補者の得票数だの、といった過去のデータ( 実)は、その時点で知覚された事実を調査者が記録したもの であり、そこには、若干の誤差があるとしても、調査者(史 料記述者)の想起だの解釈だの再構成だのが介入する余地は ない。換言すれば、これらのデータは、後になって想起され たものではなくて、過去のある時点で直接に知覚された事実 であり、その事実が、そのまま、現在のわれわれに提供され ているのである。そして、このことは、時代を遡って、十六 世紀の市場価格表だの、十七世紀の小教区帳簿だの、十八世 紀の課税台帳だの小作契約書だの遺産目録だのに記載された 4 国勢調査 政府が五年に一度実施する、人口や世帯の実態調査。 5 データ 四三ページ注3参照。 6 小教区 キリスト教で、布教などのために設けられた区域。 7小作地主から土地を借りて地代を支払い、耕作する仕組み。 Ind alini 273 10

回答募集中 回答数: 0
数学 高校生

イの問題で解説のベン図も、"ここがない"の意味も分かりません😭教えてください

●集合の共通部分集ロ (ア)空欄にあてはまる適切な論理式を選択肢より選んで答えよ。 (1) (AUB)N(AUC)=AUD (昭和女子大,一部省略) (2) (ANB)U(ANC)=AN() (3) (A∩BNCnc=nc 選択肢 (a) AUB (c) CUA (b) BUC (d) ANB (e) BNC (f) CNA (g) AUB (h) BUC (j) A∩B (i) CUA (イ 空欄に下の条件 P1 ~ Pa から正しいものをひとつ選んで入れよ。 (k) BNC (1) CNA 明治学院大・文,一部省略) ABと同値な条件は (1) BOAと同値な条件は (2) ABと同値な条件は(3). P1: (A∩B) B P2: (A∩B) A ベン図を描くのが基本 P3: (AUB) A P(A∩B) B 集合の共通部分・和集合・ 補集合をとらえる基本はベン図を描くことであ る。ベン図から,「分配法則」や「ド・モルガンの法則」が成り立つことが分かる。ベン図を描く方法に これらの法則を適宜組み合わせるといった使い方もできるようにしておくとよいだろう。 解答言 (ア) (1)~(3)の左辺が表す集合をベン図に描くと下図のようになる. (1) A (2) A B (3) B A 例えば (1) を図示するには、 AB、 AB. B AUB= CAUC= の共通部分 (n) を図示して、左 図のようになる。 C (1) (AUB) (AUC)=AU (BC) となり,答えは, (e) (2) (A∩B)U(ANT)=AN(BC) となり,答えは, (k) (3) (A∩BNC)n=(A∩B) ∩Cとなり, 答えは, (j) 注 (1) 分配法則 (p.68の① で,右辺 左辺) の式である. (2) (A∩B)U(ANT)=AN(BUT)=AN(BC) (3) (A∩BNC)n=(A∩BUT)C=(A∩BNC)U(TOC) =(A∩BNC) UΦ=ANBNC (イ) P1~P4の条件の左辺を網目部で表すと, 以下のようになる。 P(A∩B)⊃BP2: (A∩B) AP3:(ĀUB) A P(A∩B) B A BA D D B A B A (1)のベン図は, A以外に BNC の部分も含んでいることか ら答えを探す. (2)(3)も同様 ←式変形で解くと左のようになる。 最初の等号は分配法則, 2番目は ドモルガンの法則による. B 網目部⊃右辺となる条件を求め る.例えば, P1 の場合、網目部が Bを含むことになり、太枠部で まれた部分がない (空集合) こと になる. ここがない ACB ⇔AB ⇔AB がない ⇔ACB 以上により,答えは,(1)... P1, (2)... P3, (3) P2 (網目部⊃B) ⇔B=Φ 1 羽 一般に, XCYX(上 図参照)

回答募集中 回答数: 0
1/1000