学年

教科

質問の種類

生物 高校生

生物の検定交雑の範囲です。(3)教えてください。独立①と連鎖②③④は組換え価で判断できました。で、そこからなんで連鎖がA、C 、dとa、c、D(文字の大小)になるか分かりません。ACDとacdじゃダメなんですか?分かりません…教えてください🙏

○ 検定交雑、 三点交雑、 染色体地図 3 ある生物の4対の対立形質を現す遺伝子には,A, a, B, b, C, c, D,dの8つがあり,A,B,C, Dが優性遺伝子, a, b, c, dが劣性遺伝子で,Aとa, Bとb, Cとc, Dとdがそれぞれ対立遺伝子の関 係にある。 いま, 「ある遺伝子型が不明ですべて優性形質を示す個体」 と 「すべて劣性形質を示す個 体」を交雑させた。 その結果を2対ずつの形質に着目すると, 次世代の表現型は次のようになった。 なお, 表現型はすべて[]で表す。 ①A(a)とB(b)について, [AB]:[Ab]:[aB]:[ab]=1:1:1:1であった。 ②A(a)とC(c)について,[AC]:[Ac]:[aC]:[ac]=3:1:1:3であった。 ③ A(a)とD(d)について, [AD] [Ad]:[aD]:[ad]=1:4:4:1であった。 C(c)とD(d)について, [CD][Cd][cD]: [cd]=1:19:19:1であった。 問1. 交雑に用いた優性個体についてA(a),B(b)に関する遺伝子型を答えよ。 また, 劣性のホモ接合 体をかけ合わせる交雑を何というか。 問2. ①~④の結果から, それぞれの遺伝子間の組換え価を求めよ。 問3. ①~④の結果から、 同じ染色体に存在すると考えられる遺伝子の組み合わせを答えよ。 また, それらの遺伝子と独立の関係にある遺伝子を答えよ。 問4. 問2で求めた組換え価をもとに, 連鎖している遺伝子の染色体地図を作成せよ。 なお, 染色体地 図は,アルファベットの若い文字を左端に置いて作成することとする。 (1) AaBb 検定交雑 A-C A-D (2) ①50%% 2 ② 25% ③ 20% (4) ④ x106 240 =5% (3) 同じ染色体=A.C.d と ac D 独 B - b

回答募集中 回答数: 0
現代文 高校生

現代文の質問です。なぜ、コメンテーターにとって人口減少が便利な言葉なのかという問いで、答えが、実際に因果関係のない人口減少で危機を煽っても、誰も傷つけない、だそうです。なぜ、文章中にある、一般の人を騙しやすい、が理由にならないのでしょうか。

8 8 【文章Ⅱ】 ちまた 2065年に約8800万人まで減少する一方で、高齢者の割合は4割近くに上昇すると推計 ① 日本の行く末を論じる上で、巷で騒がれているのが「少子高齢化で人口減少時代に突入する から何かと大変」という話題だ。国立社会保障・人口問題研究所によれば、日本の人口は、 人口増加こそが幸福をもたらすかのような風潮だ。 ② この推計に乗っかって、新聞、書籍、経済誌、ネット記事に至るまで、人口減少時代に起こ るであろう、ありとあらゆる危機の事象予測とそれに対する処方箋が考察されている。まるで、 かわいまさし うはいかない。 ⑤ というのも、その地域の人口が減れば当然、いずれは行政規模の適正化のため、市町村を合 併しなければならない。民間企業なら地方の支店を減らすくらいで済むが、地方公共団体はそ 地方公共団体の関係者だと筆者は見ている。人口が減り続けたら、最も困るのは彼らだからだ。 版されるなど、世間の耳目を引いている。 談社現代新書)だ。これが45万部を超える大ベストセラーとなり、類似したムック本が複数出 ③その火に油を注いだのが、2017年6月に発刊された河合雅司氏の著書『未来の年表』(講 4 とはいっても、実はこの「人口減少危機論=人口増加幸福論」を支持する“世間〟とは、主に ⑥ 日本では過去3回、自治体が大合併した歴史がある。(図1)日本には1888年(明治2 年)時点で、自然集落の町単位で7万以上もの自治体があったが、翌1889年の「明治の大 合併」によって、1万5859の市町 に再編された。 らに合併が進むかもしれない。 することを目標に掲げていたから、さ 府は、もともと自治体数を1000に 治体数は1718で止まっている。政 年(平成26年)の合併を最後に全国自 合併」「平成の大合併」を経て、2014 戦後も市町村合併は進み、「昭和の大 図1 自治体の合併の歴史 1,242 10,982 1,797 8,518 1,903 1,574 663 1,994 577 568 自治体数 年月 計 市 町 村 |1888年 (明治21年 ) 1889年(明治22年) | 71,314 71,314 15,859 39 15,820 1922年(大正11年) 12,315 91 1945年(昭和20年10月) 1947年(昭和22年 8 月) 10,505 1953年(昭和28年10月) 9,868 1956年(昭和31年4 年4月) 4,668 10,520 205 210 1,784 | 8,511 286 1,966 7,616 495 1,870 | 2,303 1956年(昭和31年9月) 3,975 498 1962年(昭和37年10月) 1961年(昭和36年6月) 3,472 556 1,935981 3,453 558 1,982 913 1965年(昭和40年4月) 3,392 560 2,005 827 1975年(昭和50年4月 3,257 643 1,974 640 2,001 601 1995年 (平成 7年 4月 3,234 1999年 (平成11年4月) 3,229 671 1,990 3,218 675 ,981 | 562 1985年 (昭和60年 4月 3 月月月月月 年年年 18 786 757 2002年 (平成14年4月) 2004年(平成16年5月) 3,100 695 _ 1,872 533 2005年(平成17年4月) 2,395 739 1,317 339 1,821 2006年(平成18年3月) 2010年 (平成22年4月) 1,727 2014年(平成26年4月) 1,718 777 846 198 198 790 745 183 (総務省 「市町村数の変遷と明治 昭和の大合併の特徴」 より ) 25・・ しないことが分かる。 このように過去を振り返ると、人口 あったからだ。したがって、人口減少で地方自治体が消滅するという相関関係は必ずしも成立 増加時代にあっても自治体の数は減っている。そこには行政の効率化という大きなメリットが 2017年には約274万人と50万人以上減った。 事実、ピークの1994年には約328万人もいた地方公務員の数は、その後減少を続け、 り 自治体が合併すれば、2つの役場が1つで済むわけだから、課長や係長といったポストも1 つずつ失うことになるだろう。あるいは将来的にリストラで職場そのものを失うかもしれない。 ここう そこで、地方役人らは何とかして糊口をしのごうと、「地域に人口を増やそう 尾 Alchy 30 L

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25 組分けの問題 (2) ・組合せ 0000 9人を次のように分ける方法は何通りあるか。 (1)4人,3人, 2人の3組に分ける。 (2)3人ずつ, A, B, C の3組に分ける。 (3) 33組に分ける。 る 東京 (4)5人、2人, 2人の3組に分ける。基本21 指針 組分けの問題では,次の① ② を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか 「9人」は異なるから, 区別できる。 ...... 特に,(2) と (3) の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, C の区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると,異な る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める方 法の数。 (4) 2つの2人の組には区別がないことに注意。 なお,364 基本例題21との違いにも注意しよう。 (1)9人から4人を選び, 次に残った5人から3人を選ぶ 解答 と,残りの2人は自動的に定まるから, 分け方の総数は 9C4X5C3=126×10=1260 (通り) (2) Aに入れる3人を選ぶ方法は 3-(A-8) C3通り Bに入れる3人を, 残りの6人から選ぶ方法は 6C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は 9C3 × 6C3=84×20=1680 (通り) 2人,3人,4人の順に選 (1) 八郎(S) んでも結果は同じになる。 4×53×2C2としても 同じこと。 (2),A,B,Cの区別をなくすと、 同じものが3!通 次ページのズーム UP 参 りずつできるから、分け方の総数は (9C3 × 6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は 9C5×4C2 B,Cの区別をなくすと、 同じものが2! 通りずつでき るから,分け方の総数は (9C5×4C2)÷2!=756÷2=378 (通り) 照。 <次ペ 本

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25組分けの問題 (2) ... 組合せ 9人を次のように分ける方法は何通りあるか。 (1)4人,3人,2人の3組に分ける。 (2)3人ずつ,A, B, Cの3組に分ける。 (3) 3人ずつ3組に分ける。 (4)5人2人、2人の3組に分ける。 0000 [類 東京経 基本21 「9人」は異なるから、区別できる。 指針 組分けの問題では,次の①,②を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか ****** 特に,(2)と(3)の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人の組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A,B,Cの区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると、果た る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める 法の数。 (4)2つの2人の組には区別がないことに注意。 なお, p.364 基本例題21との違いにも注意しよう。 解答 (1)9人から4人を選び, 次に残った5人から3人を選ぶ と、残りの2人は自動的に定まるから, 分け方の総数は 9C4×5C3=126×10=1260 (通り) ei (2)Aに入れる3人を選ぶ方法は 9C3通り Bに入れる3人を, 残りの6人から選ぶ方法は C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は C3X6C3=84×20=1680 (通り) 2人,3人,4人の順に (1) んでも結果は同じになる C4X5C3×2C2としても 同じこと。 (2)で,A,B,Cの区別をなくすと, 同じものが3! 通 次ページのズームUP りずつできるから、分け方の総数は (9C3X6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は C5×42通り B,Cの区別をなくすと,同じものが2! 通りずつでき るから,分け方の総数は (9C5X4C2)÷2!=756÷2=378 (通り) 照。 次ページのズーム 例

回答募集中 回答数: 0
1/1000