学年

教科

質問の種類

数学 高校生

(2)解説見てもいまいちわからないのですがどなたか教えて欲しいです 重要例題の方です!

重要 例題 71 定義域によって式が異なる関数 00000 関数f(x) (0≦x≦4) を右のように定義すると 2x (0≦x<2) き、次の関数のグラフをかけ f(x)= (1) y=f(x) (2) y=f(f(x)) |8-2x (2≦x≦4) けに利用す 分け ・分け。 √2 -101 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxに f(x) を代入した式で f(x) <2のとき 2f(x), 2≦f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0≦f(x) <2となるxの範囲と, 2≦f(x) 4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 答 (2)f(f(x)) = {g2(x)=f(x)≦4) (0≦f(x)<2) よって, (1) のグラフから 123 3章 ⑧ 関数とグラフとの 変域ごとにグラフをかく。 (1) のグラフから, f(x) D 0≦x<1のとき f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 平 f(x)の 1≦x<2なら f(x) =2x 2≦x≦3なら f(x)=8-2x のように,2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 0≦x<1のとき 1≦x<2のとき f(f(x))=2f(x)=2.2x4x f(f(x))=8-2f(x)=8-2・2x =8-4x 1 (p+d g+o 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=28-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) ya YA 4 A x R 1234 x 参考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 8から2倍を 引く 4--- 0 4 x 2倍する 練習 関数 f(x) (0≦x<1) を右のように定義するとき, 71 次の関数のグラフをかけ。 2x (0≦x</ f(x)= (1) y=f(x) (2)y=f(f(x)) 2x-1 1 (1/2x-1)

回答募集中 回答数: 0
数学 高校生

こちらの(2)が理解できないので、詳しく教えていただきたいです!

114 き、次の関数のグラフをかけ。 関数f(x) (0≦x≦4) を右のように定義すると 重要 例題 68 定義域によって式が異なる関数 (2) 00000 f(x)= =(2x-2x (25x50) (0≦x<2) (1) y=f(x) (2)y=f(f(x)) 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2)f(f(x)) f(x)のxに f(x) を代入した式で, 解答 0≦f(x) <2のとき 2f(x), 2f(x)4のとき ! 8-2f(x) (1)のグラフにおいて, 0≦f(x)<2となるxの範囲と, 2≦f(x)≦4となるxの範囲を見 極めて場合分けをする (1) グラフは図 (1)。 (2)f(f(x))={2}(x) (2≧f(x)≦4) (0≤f(x)<2) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 1≦x<2のとき f(f(x))=8-2f(x)=8-2・2x=8-4x 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x)=4x-8 3<x≦4のとき f(f(x)) =2f(x)=2(8-2x)=16-4x よって, グラフは図 (2)。 (1) YA 4 T J VA 4 O 1 2 3 4 x 0 1 2 3 4 x ■変域ごとにグラフをかく。 (1)のグラフから,f(x)の 変域は 0≦x<1のとき 0f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は 基本 ① 2次 1≦x<2なら f(x)=2x 2≦x≦なら f(x)=8-2x のように, 2を境にして式 が異なるため (2) は左の解 答のような合計4通りの場 合分けが必要になってくる。 2 3 x ま 2 参考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 YA 8から2倍を ASS 引く 4 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右図で, 黒の太細線部分が y=f(x), 赤の実線部分が 2 y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ )。 0 X 2倍する

回答募集中 回答数: 0
数学 高校生

解説お願いします

19:43 三 11 LIN 78 第2章 関数と関数のグラフ 8 を実数の定数とする. 2次関数y=x4x+50SェSa () α>4のとき 最大値、最小値をαがそれぞれ以下の範囲にあるときに求めよ。 (1) 0<a<2 のとき (日) 2<a<4 のとき に の右端が文字αで与えられています。 αの値が変われば 講 は変わるので、最大・最小をとる場所も変わっていきます。 のそれぞれの範囲にあるときに、 「軸と変域の位置関係 どうなっているかに注目するのがポイントになります。 ここま この式 もできま つけるこ ばれるこ さっ けるこ 平方完成すると 解答図 (2)'+1 なので、この2次関数のグラフの軸はュー2 である。 [ 例え のよ を代 このグラフを Ossa で切り取ることを考える。 だけ (i) 0<a<2 のとき 下左図のように、軸は変域の外側にあるこのときは、 0 2 x=0で最大値5をとり. と αで最小値 α'-4α+5 をとる。 (i) 2<a<4 のとき 下中央図のように軸は変の内側にあり、左側の点の方が軸から遠い このときは、 =0で最大値5をとり =2で最小値1をとる. >4のとき 下右図のように軸は変の内側にあり. 右側の端点の方が軸から遠い。 こ のときは, =αで最大値 -4 +5 をとり =2で最小値1をとる. 最大軸 (最大 ( (最大) 0 a 2 (最小) (最小) 0 2a4

回答募集中 回答数: 0
数学 高校生

212. このような記述でも問題ないですかね?? 0<h<aは書いていないですが問題ないですよね? (r^2=a^2-h^2は書いていてr,a,hは当然全て>0なのだから同様のことは言えていると思いました。)

330 00000 基本例題 212 最大・最小の文章題(微分利用) 類 群馬大 半径aの球に内接する円柱の体積の最大値を求めよ。 また,そのときの円柱の高 基本 211 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 AM-* ① 変数を決め、その変域を調べる。 [②]最大値を求める量(ここでは円柱の体積), 変数の式で表す。 ③3 ②2 の関数の最大値を求める。なお,この問題では、求める量が,変数の3次式で表 されるから,最大値を求めるのに導関数を用いて増減を調べる。 無 なお,直ちに1つの文字で表すことは難しいから,わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 ならば、方程式 #SEN 計算がらくになるように 2h とする。 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=a²-h² 0 <2h<2aから 0<h<a Fo 円柱の体積を Vとすると V=лr² 2h=2(a²-h²)h =-2π(h-a²h) Vをんで微分すると V'=-2π (3h²-α²) =-2π(√3h+a)(√√3 h-a) 0くん <a において, V'=0となる a =1/3のときである。 のは,h= ゆえに,0くん<a におけるVの増 減表は,右のようになる。 したがって, V はん= a √3 よって体積の最大値 次回数でも学んだ h V' 2T V 4√3 9 のとき最大となる。 9-m- 0 ... h= a =1/3のとき,円柱の高さは 2 - 2√3 √3 a 3 -ла³, そのときの円柱の高さ 23 3 a *** 2x(a²-3).-4√3 a /3 9 + a √√3 0 極大 練習 ②212 底面の半径,および側面積を求めよ。 [R a 半径1の球に内接する直円錐で, その側面積が最大 三平方の定理=y(1) 変数の変域を確認。 atla31 82x25- [S- (円柱の体積) = (底面積)×(高さ) dV dh をV' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後,本書の増減表は,こ の方針で書く。 12h 12π(a²-h²)h に対し, その高さ,

回答募集中 回答数: 0
数学 高校生

2(1-logx)/x^2=0のxの値の求め方について詳しく知りたいです。 どなたかお願いします🙇 2枚目の考え方であっていますか?

244 関数のグラフの概形 (1) 発展例題163001 基礎例題 150 関数 y = (logx ) 2 の増減, 極値,グラフの凹凸, 変曲点, 漸近線を調べて) グラフの概形をかけ。 CHARI & GUIDE ① 定義域 x, yの変域に注意して, グラフの存在範囲を調べる。 ② 対称性 x 軸対称, y 軸対称, 原点対称などの対称性を調べる。 ③ 増減と値 y'の符号の変化を調べる。 ④ 凹凸と変曲点y" の符号の変化を調べる。 ■解答 関数の定義域は, 10gxの真数条件から 210gx ⑤ 座標軸との共有点 x=0のときのyの値, y=0 のときのxの値を求める。 ⑥ 漸近線x→±∞ のときのりやり→±∞となるxを調べる。 PRO y'=2(logx) (logx)'=- y' xC 20 J² y y"=- y'=0 とするとx=1, yの増減やグラフの凹凸は、次の表のようになる。 75004 1 0 関数のグラフの概形 次の1~6⑥ に注意してかく (2logx)'.x-(2log x)(x)' _ 2(1-logx) x² 1 + 0+fx + : + + e+ y'=0 とするとx=e7 0 極小 変曲点 0 1 lim y=lim (log x)² = ∞ x→+0 x=1で極小値0をとる。 変曲点は,点(e, 1) である。 また, lim logx=-∞ であるから x→+0 x>0< | +- よって, 軸が漸近線である。 以上から, グラフは 〔図] SA ↑ 1 0 1 e (10gx) ≧0であるから、 グラフは y≧0の範囲に 存在する。 150 ズーム UP ←logx=1 から x=e 注意 増減表でよく用いら れる記法 x は下に凸で増加, は下に凸で減少、 は上に凸で増加 は上に凸で減少 を表す。 ま 関 左

回答募集中 回答数: 0
数学 高校生

213. [3]でaは正の定数だから0<aであることは当然なのに 0<3a/4<1と書いているのは「すなわち」の後で aがどんな正の定数であっても[1],[2],[3]のいずれかに 属するためですか??

とにかく文 がらくになるよう とする。 平方の定理 数の変域を確認 ■柱の体積) 底面積)×(高さ) をVで表す。 0.は変域に含ま ないから、茨城の に対するVの値は 今後、本書の 2/ の方針で書く。 2x(a²- 基本例題213 係数に文字を含む3次関数の最大・最小 aを正の定数とする。3次関数f(x)=x-2ax+αx 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大] 基本 211 重要 214 指針 文字係数の関数の最大値であるが, p.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて最大値を決定する。 (s) f(x)の値の変化を調べると, y=f(x) のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f(1/3)を満たす (これをとする) があることに注意が必要。 よって、1/3 ( 1 <a) 区間 0≦x≦1に含まれるかどうかで場 a <α 3 合分けを行う。 解答 f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると x= a 3 ゆえに " ここで, x=1/3以外にf(x)= 4 a>0であるから, f(x) の増減表f(x) は右のようになる。 練習 1213 a x (*) 4 f'(x) + 3 1≦a≦3のとき 430 a |極大] 4 5a³ 27 を満たすxの値を求めると 4 f(x)=27a²³5x³-2ax² + a²x=27a²=0 αから a |=0 x=1/04 であるから (x - ²)²(x - 3/3-a)= したがって、f(x) の 0≦x≦1における最大値 M (α) は [1] 1</03 すなわちa>3のとき te 3 [2] 1/23 215/1/31 すなわち of sa≦3のとき [3] 0</1/23a <1 すなわち0<a<2のとき 以上から0<a<2,3<a のとき 1: aは正の定数とする。 関数f(x)=- ける最小値m(a) を求めよ。 a 0 極小 3 +: x=- x3 3 3 M(a)=f(1) M(a)=a²-2a+1 M(a)= 24/7a²³ phi M(a)=) M(a)=f(1) a 5+2ax²-2a²x f(x)=x(x2-2ax+α²) =x(x-a)^ から O (3)= (-3/a)² = 27ª² [1] YA [2] y Q3 O YA [3] y α3 -a²-2a+1 I -最大 II 1 a 3 3 a ax 1 a a²-2a+1 O a 3 注意 (*) 曲線 y=f(x)と直線y=27d" は、x=1/3の点において接するから、f(x)は (x-)- で割り切れる。このことを利用して因数分解している。 最大! a 4 a x ax²-2ax+αの区間 0≦x≦2にお p.344 EX 138 331 6章 3 最大値・最小値、方程式・不等式 37

回答募集中 回答数: 0
1/16