学年

教科

質問の種類

世界史 高校生

空いてるところ教えてください!!😭

第2章 近代ヨーロッパ・アメリカ世界の成立 第4節 19世紀後半のヨーロッパ p.47~51 MQ (メインクエスチョン): ナショナリズム・自由主義によって、各国家はどのような歩みをたどっただろう? <クリミア戦争> <ロシアの近代化> i) ロシアの南下政策・・・ 年間を通して凍らない港 (不凍港) を求めて南へ勢力を拡大したい。 (1 から地中海へ出るルートを開拓しようとした。 立ちはだかるのは (2 )。 (3 クリミア 《 ロシア 》 目的 : 南下政策を進めるため 戦争) (1853~56年) VS 結果:露の敗北で南下政策挫折⇒1856(5パリ ① 《オスマン帝国》 ② <4 目的: ロシアの南下政策を阻止するため 条約で、 南下政策が阻止された これにより、ウィーン体制以降勢力均衡を保とうとしたヨーロッパの体制は崩壊し、自国の利害を最優先する 「国民国家」としての性格が強くなっていった。 ii) ロシアの近代化 クリミア戦争での敗北を機に、ロシアでは大規模改革が行われた。 (6 の (7 ) ・・・領主の支配から農民を解放。 But! 土地を所有するためには多額のお金を支払わなければならず、不徹底。 戦争) (1877~78年) (8 ・・・ロシアとオスマン帝国の再戦。 オスマン帝国がバルカン半島のスラヴ民族を弾圧したことを口実に、 ロシアが 干渉して勃発。 ロシアが勝利を収めるも ・・・。 イギリスの繁栄> ⅰ) (9パリス=ブリタニカ) (=イギリスの平和) ・・・ 19C 後半のイギリスでは、「王権」よりも「議会」が強いため、 「革命」ではなく 「改革」で絶頂期を迎える。 ) ・・・イギリスの繁栄を世界に誇示するために開かれた。 ① (10第1回万国博覧会 学制 制の成立… 保守党と自由党が議会選挙を争い、勝者が政権を担当する。 <イタ 当時 . ii

回答募集中 回答数: 0
数学 高校生

例題47(2)の青い部分で何を言ってるのかよく分かりません。 青い部分以降もなぜそれをすれば答えが出るのかも教えて欲しいです。

2 第2章 高次方程式 Think x ²2 2次式の因数分解 (1) 複素数の範囲で考えて、次の式を因数分解せよ。依 ア 3xxのを求めよ。 例題 47 x-160 (2) xxy-6²-9x+ky+20 が1次式の積となるように熱の値 LONE を定めよ. |解答 考え方 (1) (与式)=0とおき、xの2次方程式を考えると,複素数の範囲で必ず解をもっ (2) まずxの2次式とみて因数分解し, これがx,yの1次式の積になると考える。 (1+AS)E 別解では, 「与えられた式が1次式の積で表される」 ⇒ (1) (ア) 31=0の解は, (2) SA )の形に因数分解できる」ことから( __(-1)±√(-1)-4・3・(-1)_1±√13 2.30 (沖縄)(増量)] x2+(y-9)x-6y2+ky+20=0 の判別式をDとすると,①の解は, x= 2 したがって, 与式は, x=- よって15 3x-x-1=3x-- (イ)x16=(x-4)(x+4)=(x-2)(x+2)(x+4人 3x²-x-1=0の2 x2+4=0の解は,x2=-4 より 解をα, βとすると、 したがって,x+4=(x-21)(x+2i) 左辺は よって, x-16=(x-2)(x+2)(x-2)(x+2i) の2次方程式 3x²-x-1 S __(y-9)±√D_9-y±√D と因数分解できる. 4 1+√13 6 √13)(x-1-√13) 6 (5)=(x-9-y+√D 2 3569 10 2 x=±2i x-9-y-√D (1) D=(y-9)²-4・1・(-6y2+ky+20 ) =y°-18y+81+24y²-4ky-80) == (S-88 =4(k+9k+14)=4(k+7)(k+2) したがって, 4(k+7)(k+2) = 0 よって, k=-7, -2 **** =25y^-2(9+2k)y+1=0 2(1)( したがって、与式がx,yの1次式の積になるのは, 根号の中のDがyの完全平方式であるときである. yについての2次方程式 25y²-2(9+2k)y+1=0 の 判別式をDとすると,D=0である. wimm D={(9+2k)}^-25・1=4k²+36k+56 )() の形で表す。 解の公式を用いる。 の係数3を忘れ ないこと ESTE =3(x-a)(x-β) と因数分解すること ができる. yの2次式 |完全平方式とは, ay-α)” の形のこと 完全平方式であるか ら、重解をもつ (判別式) = 0 100900-8+ x(+9)+* 注)Dがyについての2次式なので、Dをa(y-α)² と表すことができればDyの 1次式として表すことができるので、Dがyの完全平方 k-7 のとき D = ( 5y+1)^ k=2のとき D=(5y-1)²

回答募集中 回答数: 0
数学 高校生

このような問題の文字係数の方程式を解くときにどのような思考回路?で解けばいいですか? 教えてくださいお願いします😢

**** y), a-1- 直接計算するの 二変なので、 果を利用し を下げる. と同様, 次数を下げて る. Think 例題 55 文字係数の方程式 解答 aを定数とするとき, 次の方程式を解け. (1) ax²-(a+1)x+1 = 0 Focus 「練習 55 考え方 文字係数を含む方程式を解く問題. p.68 の例題 29 文字係数の不等式と同様に考える。 つまり、見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。」 **** (1) (i) a=0 のとき たとえば,(1)では, x2の係数α に着目すると, a=0 のとき, -x+1=0 となり, 1次方程式となる. a=0のとき, ax²-(a +1)x+1=0 の2次方程式を考える. もとの方程式は, -x+1=0 より, (ii) α = 0 のとき ax²+(-a-1)x+1=0 (x-1)(ax-1)=0 より, α = 0 のとき, x=1 よって, (2) (a²-1)x²=a-1 (2) (a-1)(a+1)x²=α-1 (i) a=1のとき a=0のとき、x=1.12 (ii) α=-1のとき x=1. もとの方程式は, 0.x2=0 このとき, xはすべての実数 (ii) αキ±1 のとき 3 2次方程式と2次不等式 123 パーリフター もとの方程式は, 0.x2=-2 これを満たすxは存在しないので、解なし x=1 1 α²-1 ¥0 から、 両辺を2-1で割って, x2= 1 a+1 = √a+1 a+1 a>-1のとき x=± ②a<-1のとき、解なし よって, (i)a=1のときxはすべての実数 ②a≦-1のとき、解なし **** x2の係数が0のとき, x2の項がなくなるの で,xの1次方程式に なる. √a+1 0 -1<a<1,1<a のとき, x=± a+1 1 -1→>> X= -a -1→> -1 x² = α=1のとき, xがど のような値であっても, 0x=0 は成り立つ。 α=1のとき, xに どのような値を入れて も.0.x=-2 が成り 立たない. 文字係数の2次方程式(x²の係数) 0 に注意 αを定数とするとき, 方程式 ax²+(2-a)x-2=0を解け、 -a-1 F 1 a+1 a+1>0 つまり、a> a-l (a+1)(a-1) >0より、 第2章 p. 168 (14)

回答募集中 回答数: 0
数学 高校生

(2)の問題です。赤いマーカー引いてある「gをmの関数とみなし」の意味がわかりません。 あと、(2)の解説詳しく教えてください。

104 第2章 2次関数 例題 44 最小値の最大・最小 xの関数f(x)=x2+3x+mのm≦x≦m+2における最小値をと 2 は実数の定数とする. おく. 次の問いに答えよ.ただし, m (1) 最小値g をmを用いて表せ (2) の値がすべての実数を変化するとき, g の最小値を求めよ. (岐阜大・改) 考え方 (1) 例題 43と同様に考える.軸が定義域に含まれるかどうかで場合分けする。 (2) (1)より,の値を1つ決めると, g の値がただ1つ決まる. よって、で求めた をの関数とみなし, グラフをかいて考える. 解答 (1) f(x)=x2+3x+m=x+ ①平方完成 [2]最小値の場合分け + g. mf(x + 2)²+ グラフは下に凸で, 軸は直線x=- (i) m+2<-- のとき つまり、m -1/2のとき グラフは右の図のようになる。最小小 したがって, 最小値 mm+2 g=m²+8m+10 (x=m+2) 3 (ii) mu-100mm+2 のとき つまり、 9 +m 4 3 7 3 12/2≦m≦-12/2のとき グラフは右の図のようになる. したがって, 最小値 g=m- 3 (iii) m>-. のとき x=1 グラフは右の図のようになる. したがって, 最小値 g=m²+4m (x=m) (2)(1) よりgmの関数とす ると, グラフは右の図のよう になる. よって,g の最小値は, 6m=4のとき) (i) -4 最小 7 2 11 11 11 11 11 x=- 最小 3 2 3 mm+2 3 2 32- | 最小 mm+2 94 / (iii) T 0 1 I HAVE 15 11 (ii) 4 11 AS m 23 Think 場合分けのポイン は例題43 (1)と同 例題 45 y=(x2-2x t=x2- yをt 求めよ (1) (2) 考え方 m軸g軸となるこ とに注意する. yはxc つまり 域に注 つまり (1) t よう の (2) cu:

回答募集中 回答数: 0