学年

教科

質問の種類

数学 高校生

数IIについて  「方程式の実数解をαとする」の部分で、置きかえるのはどうしてですか。

x の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 基本 38 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る 解答 方程式の実数解をα とすると D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解を α とすると (1+ i) a²+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, b=0 ← α, k の連立方程式が得られる。 ←置きかえるのは どうして? 784) 複数が合されている (1+i)a²+(k+i)a+3+3ki=0 ...... x=α を代入する。 整理して (a²+ka+3)+(a²+a+3k) i=0 ←a+bi=0 の形に整理。 α, k は実数であるから, Q2+ka + 3, a²+α+ 3k も実数。この断り書きは重要。 よって a²+ka+3=0 ◆ 複素数の相等。 a²+a+3k=0 ① ② から ゆえに よって [1] k=1のとき ① ② はともに α2+α+3=0 となる。 これを満たす実数 α は存在しないから、不適。 [2] α=3のとき ①,②はともに 12+3k=0 となる。 ゆえに k=-4 [1], [2] から 求めるkの値は 実数解は (k-1)α-3(k-1)=0 (k-1)(a-3)=0 k=1 または α=3 ONE 2次方程式には適用できな k=-4 x=3 De ← α2 を消去。 inf を消去すると α3-2²-9=0 が得られ, 因数定理 (p.87 基本事項 2 を利用すれば解くことがて きる。 ←D=12-4・1・3=-11< ← ①:32 +3k+3=0 ②:32+3+3k=0 INFORMATION 2次方程式 ax²+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a,b,cが実数のときに限る。 例えば,a=i, b=1,c=0 のとき -4ac=1>0 であるが, 方程式 ix2+x=0 の解 異なる2つの実数解をもたない (p.85 STEP UP 参照)。

未解決 回答数: 2
数学 高校生

赤矢印の部分でなぜ①の式がこの式に変わったのか理解できません。教えてください🙇‍♀️

文字係数の2次不等式の解 重要 例題 103 次のxについての不等式を解け。ただし,aは定数とする。 x²-(a²+a)x+a³ ≤0 CHART & SOLUTION 係数に文字を含む2次不等式 2次方程式の解の大小関係に注意して場合分け 左辺は因数分解できて (x-a)(x-a²) ≤0 α<βのとき (x-a)(x-β)≦a≦x≦ ここではα,βがともにαの式で表されるから, a と ²との大小関係で場合が分かれる。 解答 不等式から x²-(a²+a)x+a³≤0 したがって (x-a)(x-a²) ≤0 ④ [1] a <a のとき a²-a> 0 から a(a-1)>02 よって a<0, 1<a このとき, ①の解は a≤x≤a² 83412751- ① [2] a=d² のとき a²-a=05 よって a=0のとき α=1のとき 2 a(a-1)=0 a=0,1 ①はなり x=0 ① は (x-1)^2≦0 となり ④ [3] a>α² のとき a²-a<0から よって このとき、①の解は a² ≤x≤a 以上から a(a-1) <0 0<a<1 a²≤x≤a 0<a<1のとき a=0 のとき a=1のとき a < 0, 1 <a のとき a≦x≦a² x=0 x=1 ●基本 31,87,88C 重要 105 x=1 ← たすき掛けを利用すると 1 → - X=a²-a² 1 a³ - (a² + a) αの値を ① に代入。 (x-2 0 を満たす解 はx=α のみ。 0≦x≧0 は x=0, 1≦x≦1 は x=1 を表すから、 解は 0≦a≦1のとき a²≤x≤a a < 0, 1 <a のとき amxma² と書いてもよい。 167 3章 11 2次不等式

未解決 回答数: 0
数学 高校生

まるでかこってあるところが、わかんないです! なんで、0以上ってあえるんですか!!

あった。ここでは 考える方針は変わ Dとする。 である。 しかし、道 じである。 基本例題 128 2次方程式の解と数の大小 (1) 2次方程式x2-2(a+1)x+3a=0が-1≦x≦3の範囲に異なる2つの実数解を もつような定数aの値の範囲を求めよ。 基本 126 127 [類 東北大〕 重要 130 指針 2次方程式f(x)=0の解と数の大小については, y=f(x)のグラフとx軸の共有点の 位置関係を考えることで,基本例題 126, 127で学習した方法が使える。 すなわち, f(x)=x²-2(α+1)x+3aとして 解答 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ ⇔放物線y=f(x)がx軸の1≦x≦3の部分と、 異なる2点で交わる したがってD>0, -1<(軸の位置) <3, f(-1)≧0,(3)≧0で解決。 CHART 2次方程式の解と数の大小 グラフ利用 D, 軸、f(h)に白 この方程式の判別式をDとし, f(x)=x2-2(a+1)x+3a とする。 y=f(x)のグラフは下に凸の放物線で, その軸は 直線x=a+1である。 方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と、 異なる2点で交わることである。 すなわち,次の [1]~[4] が同時に成り立つことである。 [1] D>0 [2] 軸が-1<x<3の範囲にある [3] f(-1)≧0 [4] f(3)≧0 [1] 1/4={-(a+1)^-1・3a=d-a+1=(a-1/21) 2 + よって, D>0は常に成り立つ。 [2] 軸x=a+1について -1<a+1<3 すなわち -2 <a<2 [3] f(-1) 20 から ゆえに [4] f(3) ゆえに すなわち a≦1 ...... ①,②,③の共通範囲を求めて ...... 3 4 (−1)²-2(a+1).(-1)+3a≥0 3 5a+3≧0 すなわちa≧- 5 から 32−2(a+1)・3+3a ≧0 -3a+3≧0 3 指針」 ★の方針。 2次方程式についての問 題 2次関数のグラフ におき換えて考える。 この問題では, D の符号, 軸の位置だけでなく,区 間の両端の値f(-1), f (3) の符号についての 条件も必要となる。 + ≤a≤1 注意 [1] の(*)のように,αの値に関係なく、常に成り立つ条件もある。 -1 < (軸) <3 YA 0 a+1 1+ 3 211 練習 2次方程式 2x²ax+α-1=0が-1<x<1の範囲に異なる2つの実数解をもつ 9128 ような定数の値の範囲を求め上

未解決 回答数: 1