学年

教科

質問の種類

数学 高校生

下線部のところなんでですか?🙇‍♂️

370 基本 例題 13 複利計算と等比数列 毎年度初めにα円ずつ積み立てると, n 年度末には元利合計はいくらになる か。 年利率を、1年ごとの複利で計算せよ。 CHART & THINKING nの問題 n=1,2,3, ・・・で調べてn化 (一般化) 中央大 p.365 基本事項3基本11 「1年ごとの複利で計算」とは、1年ごとに利息を元金に繰り入れて利息を計算することを いいこの計算方法を複利計算という。 なお,1年度末の元利合計は、次のように計算される。 (元利合計)=(元金)+(元金)×(年利率)=(元金)×(1+年利率) この例題をn=3として考えてみると,各年度初めに積み立てるα円について,それぞれ 別々に元利合計を計算し、 最後に総計を求めることになる。 a 積み立て ← 1年度末 a(1+r) a 積み立て ← 2年度末 3年度末 a(1+r)² a(1+r)³ a(1+r) a(1+r)² a 積み立て a(1+r) 上の図から、3年度末には α(1+r)+α(1+r)2+α(1+r) 円になる。 これをもとに, n 年度末の元利合計を和の形で表そう。 解答 各年度初めの元金は,1年ごとに利息がついて(1+r)倍と ← α円は なる。 D にα ( 1 + r) 円, よって,第1年度初めのα円は第n 年度末には α(1+r)"円, 第2年度初めのα円は第n年度末にはα(1+r)1円 2年後にα(1+r)2円, となる。ゆえに、求める元利合計Sは,これらすべての和で S=a(1+r)"+a(1+r)"-1++a(1+r) (F) これは, 初項 α(1+r), 公比 1+r, 項数nの等比数列の和で あるから, 求める元利合計は (1+r)-1 S= a(1+r){(1+r)"-1}__a(1+r){(1+r)"−1} (円) r PRACTICE 128 ......n …… 年後にα(1+r)" 円になる。 α(1+r) を初項, α(1+r)" を末項とする。 Jei

未解決 回答数: 1
情報:IT 高校生

3問とも計算方法も答えも分からず、質問させて頂きました。 教えていただけると幸いですm(_ _)m

[3]表 2.1の命令を持つSEP-E の CPU が、あるプログラムを7000番地から実行開始して 数命令動いたところで、現在は命令フェッチ前の状態にあるとする。 この時、汎用レジスタの値 は表 2-2 主記憶装置(メインメモリ)の内容は表 2-3 のようになっている。 なお、レジスタの内 容および番地はすべて16進数である。 以下の設問に答えなさい。000円 2005 LOOT 80001 表2.1 命令一覧表(一部抜粋) P-E ニモニック TVCM 動作概要 0005 NZ V C* |ADD, F:T 加算 (T+F→T)VOY * * * * |AND, F:T ビット毎の論理積 (TAF→T) 0000 ** 0- BIT,F:T ビット毎の論理積 (TAF, フラグ変化のみ) * * 0- CMP,F:T 比較 (T-F, フラグ変化のみの減算) * * * * DEC,D-:T 値を1減らす (T-1→T) * * * * |HLT, D-:D- 実行を停止する |INC, D-:T |JCY,F:D7 値を1増やす (T+1→T) |C=1のときジャンプ (F→(R7) if C=1) |JMI,F:D7 |N=1のときジャンプ (F→(R7) if N=1) |JOV,F:D7 |V=1のときジャンプ (F→(R7) ifV=1) 無条件ジャンプ(F→(R7)) |JP,F:D7 |JR,F:D7 無条件相対ジャンプ ((R7)+F→(R7)) **** --- |JRM,F:D7 |N=1のとき相対ジャンプ ((R7)+F (R7) ifN=1) JZE,F:D7 |Z=1のときジャンプ (F→(R7) if Z=1) MOV,F:T 移動 (FT) OR,F:T ビット毎の論理和(TVF→T) SLA,D-:T 左シフト (T×2→T) |SLR, D-:T 左ローテイト SRA,D-:T |右シフト(T÷2→T) |SRR, D-:T 右ローテイト |SUB, F:T 減算 (T-F→T) |XOR,F:T ビット毎の排他的論理和 (TF→T) * * 0- **0- * * * * * * 0 * * * 0 * * * 0 * * * * * **0- ※N (Negative; 負), Z (Zero; ゼロ), C (Carry; キャリー), V (Overflow; オーバーフ ロー), * 演算結果に応じて変化する, -: 変化しない, 0: 必ず0になる 5

未解決 回答数: 1