学年

教科

質問の種類

英語 高校生

高校受験を控える弟のテストです。回答がなく困っています。どなたか回答してくれませんか?

BO (2)次は,かえで町で開催されるイベントのお知らせです。 Kaede Summer Festival We will have Kaede Summer Festival in Kaede Park in August. There will be more than 60 shops, and you can enjoy many events on stage. In the evening, you will see beautiful fireworks. Come and enjoy the summer! Schedule <Day 1> Saturday, August 10 From 9 a.m. to 9 p.m. 10:00 Yosakoi Dance 1:30 Music Performance by 6:00 Mr. William Teller Bon-Odori 7:00 Fireworks Show Information about Events Mr. William Teller will join our festival. He is a famous singer around the world. When he was younger, he lived in Kaede Town for one year. He decided to come back for Kaede Summer Festival this year. Come and enjoy his great music! <Day 2> Sunday, August 11 From 9 a.m. to 8 p.m. 000.00 00002 11:00 Dance Performance by children 3:00 Yosakoi Dance 6:00 Bon-Odori 7:00 Fireworks Show Kaede Yosakoi dance team will show their performance. They won a Yosakoi contest in Hokkaido last year. Their performance will be exciting. They have made their dance easy for the people of Kaede Town. You can dance with them! On the second day, children of the dance club at Kaede Elementary School will perform their dance. They practiced dancing hard for this festival. Enjoy their cool dance! will sď You can see the fireworks show from anywhere in the park. * Children under 13 years old can't enjoy the festival after 6 p.m. without a parent. (E) schedule anywhere どこでも W in evil won bis vti alueji ni rood asw.exp VT to adband pig box by var Joods moilimbi amox fox ral0Y+ rady (nam you of ved Imobre VIO 2008 in noble nibit won a toy tili da ni vil o bha alging so I -7-

回答募集中 回答数: 0
数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

線を引いている①の式が分からないのと、右側にある丸の印を付けている30というのが分かりません、。なんでtan90度ではないんですか? 解説お願いします🙇‍♀️

226 基本 例 135 測量の問題 00000 | 目の高さが1.5mの人が,平地に立っている木の高さを知るために, 木の前方の |地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45°であった。 木の高さを求めよ。 指針 p.222 基本事項 2 基本 133 基本 ① 与えられた値を三角形の辺や角としてとらえて,まず図をかく。そして、 ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では,三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 基本 例題 1 右の図の△AF に垂線 ADI AD=DC, AI (1) 線分AD (2) sin 75°, fast 点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい 下にあるならば俯角という。 ぎょう A 仰角 俯角 三角比 特に, の比を (1)ㄥ 形 き CHART 30° 45° 60°の三角比 (2) -30° 三角定規を思い出す 2 45° √3 (1) △ 60 45% 解答 ZA △A 右の図のように, 木の頂点を D, 木の根元をCとし 解答 目の高さの直線上の点を A', B', C' とする。 h=(10+x)tan 30° このとき, BC=x (m), C'D=h(m) とすると ① h=xtan45 A' 30° B45° ②から 1.5ml x=h これを①に代入して A 10m B xm 10+h h= ゆえに √3 (√3-1)h=10 ①,②はそれぞれ 10 よって h=- √√3-1 10(√3+1) (√3-1) (√3+1) 10(√3+1) tan 45°= =5 (√3+1) 2 したがって、求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m)(*) 注意 この例題のような, 測量の問題では, 「小数第2位 を四捨五入せよ」などの指示がある場合は近似値を求 め、指示がない場合は計算の結果を、 そのまま (つま 上の例題では根号がついたまま) 答えとする。 tan 30°= /30° 45% 60°の三角比の 値は覚えておくこと。 (*) 31.73から 5√3=8.65 よって、538.7 とすると 5√3+6.58.7+6.5 =15.2(m) √3 tan 30% h h から ここで x tan45°=1 10+x’ 練習 海面のある場所から崖の上に立つ高さ30mの灯台の先端の仰角がG 135 よ よく L. △ か <カ (2) 練習 ③ 136

回答募集中 回答数: 0