学年

教科

質問の種類

物理 高校生

(3)の問(b)で計算してもl=√5^2-0.05^2になってしまって答えが合わないです...。どこの計算が間違っているのか教えて頂きたいです。

【2】 図のように,zy 平面内のx軸上において原点をはさんで0.10m の間 隔をおいた2点 Q1 Q2にそれぞれ q〔C] の正電荷が固定されている。 空 間は真空で, クーロンの法則の比例定数を [N·m²/C^) として,つぎの問い に答えよ。 (1) 原点における電位 V[V] を求めよ。 ⑥ KG-k】 E = Ka KF 2 (2)[C]の正電荷を原点から十分遠い (無限遠としてよい) 2軸上のA 点から0点まで移動させるとき、 外力がする仕事 W[J] はいくらか。 (3) A点におかれた質量 m〔kg),正電荷 Q[C]の第三の粒子に、0点に向け初 速度を与えたとする。 =2K+ (b)もし粒子の初速度が(a)で求めた値の半分であったとすると,粒子は (a) 粒子が0点に到達するための最小の初速度を求めよ。 2k B -0.05m0.05m Q: I Q2 Vo-2 q 点にどこまで接近することができるか。 0点から近接点 B までの距離[m]を求めよ。 (c) (b)でB点に達した粒子のその後の運動を, 句読点を含めて30字以内で説明せよ。 (4)質量 m(kg), 正電荷 g[C]の粒子を原点0からQ2の方向にx[m] 離れた点Cにおく。 (a)点Cの粒子に働く力F[N] はにほぼ比例することを示せ。 ただし, xは0.05m にくらべて十分小さ いとする。 また, Fの向きも示せ。 (b)この粒子が点Cを離れて動きはじめた。 どのような運動をするか。 句読点を含めて30字以内で答えよ。

回答募集中 回答数: 0
数学 高校生

(3)のシグマの式がなぜこうなるのかわかりません。お願いします

13 奇偶で形が異なる漸化式 次のように定められた数列がある. n n+1 α」=1, an+1=an+ 2 (1) 2= |, a3=1 a6=□, a= | (n=1, 3, 5, ...), an+1=an+ である. 2 (n=2, 4, 6, ...) (2) 439= I, so= である. (3) 初項から第40項までの和は である. 奇偶で形が異なる漸化式 (明大・農) の奇隅で形が異なる漸化式は,n=2k-1, n=2kとおいて, 奇数項 (a, ……どうしに成り立つ漸化式。つまり、ak+」をza-」で表す式を立てて解き、もとの漸化式に戻 てを求める. 解答量 1+1 2 (1)q=1より, a2=a+ =2, a=az+ =3, 2 6 5+1 a=a3+ 3+1 L=5.05=a+1/2=7. 2 =7, a6=as+ 2 =10, α7=46+ 2 =13 (2)n=2k-1のとき, (2k-1)+1 α(2k-1)+1=2k-1 + .. azk=azk-1+k 2 2k 2 ( n=2kのとき,a2k+1=a2k+ -=azk+k ①,②より, a2k+1=Q2k+k= (a2k-1+k)+k=a2k-1+2k n≧2のとき, azn-1=a1+(ag-a)+(α5-a3)++ ( an-1-a2n-3) =a+(a2k+1-a2k-1)=1+2k=1+2.- 2.1/2(n-1)n n-1 k=1 n-1 k=1 =n2-n+1(n=1のときもこれでよい) ① から, a2n=azn-1+n=n2+1 ③ ④でn=20として, α39=202-20+1=381, ao=202+1=401 (3) ③ ④ より 20 n=1 20 (azn-1+ a2n)=(2n²-n+2) n=1 =2・1・20-21-41-12 ・20・21+2・20=5570 13 演習題 ( 解答は p.77 ) ④ 奇数項についての漸化式を立て て奇数項を求める。 偶数項は奇 数項からすぐに分かるので, 偶数 項についての漸化式は立てる必 要はない. a=na k=1 次の漸化式によって定義される数列{az} (n=1, 2, ...) について, 次の問いに答えよ. 1 a1=4,a2n=/02n-1+n2, a2n+1=442m+4(n+1) (1) a2, 3, 4, 45 を求めよ. (2), 2n+1をnを用いて表せ. (3){4}の項で4の倍数でないものは,nの値が小さいものから4項並べると, 4, ao, a, a である。 (2) 奇数番目の項だけ に着目する. (3) 2+1 は漸化式か 68 (類 松山大薬) (1) (2) (i (in (i ■解 (1) 左 (2 I

回答募集中 回答数: 0
地学 高校生

この問題わからないです。教えてください🙇‍♂️どうすればいいですか

スキル 階級区分図のつくり方 SKILL 5 しきさい 階級区分図を作成するには、まず統計データの最大値と最小値に注目して3~5段階ぐらいに区分する。 次に、階級区分に応じて明るい色から暗い色へ もしくは暖色から寒色へ濃淡や色彩を決める。 この とき、各区分の大小の順序が分かるようにパターンを主笑することが大切である。 階級区分やパターン この決め方が悪いと, 作図の意図が伝わりにくくなる。 統計地図を作成する際には、意図が伝わりやすい 図のタイトルをつけることや、 例 統計の調査年、出典, 縮尺 (スケール) を記載することなどにも留 意しよう。 [和2年 全国都道府県市区町村別面積調、ほか) 都道府県別人口密度 (2020年) ■600人/km²以上 400~600 ■ 200~400 200人/km2未満 Let's TRY 都道府県別人口密度 (2020年) ■600人/km²以上 1400~600 1200~400 1200人/km2未満 B 都道府県別人口密度 (2020年) 15000人/km²以上 4000~5000 13000~4000 |3000人/km²未満 200km 1 同じ内容を異なる色と階級で示した階級区分図 STEP 1 都道府県別人口密度を表した階級区分図として、 図1のBとCの色や 区分をどのようにすれば分かりやすくなるか, 考えよう。 Ⓡ ( © ( けいこう | STEP 2 図2の統計データをもとに, 傾向がよく表れるような階級区分図を作 成しよう。 その際, 階級区分をどのように設定したのか説明しよう。 |1000人あたりの 大学生数(人) 北青岩宮秋 形島城木馬玉葉京川 山福茨栃群崎 17.0 新 13.0 富 山 田 千 東 都道府県 北海道 森 手 10.4 石 25.1 福 tre 10.1 山 梨 20.9 岡 12.2 長 8.2 岐 13.3 静 岡 10.8 山 9.9徳 11.7 愛 知 25.5 香 15.6三 15.8 滋 18.2 京 54.9 大 神奈川 20.3 兵 重賀都阪庫 8.5 愛 24.3 高 63.9 福 27.9 佐 22.8 長 島口島川媛知岡賀崎 図 都道府県別1000人あたりの大学生数 * 都道府県 1000人あたりの 大学生数(人) 都道府県 湯 14.3 奈 11.5 和歌山 1000人あたりの 大学生数(人) 良 1 (2020年) (文部科学省資料、ほか〕 000人あたりの 都道府県 大学生数(人) 17.2 熊 9.5 大 川 28.1 鳥 14.4 島 取 13.9 宮 井 根 11.6 鹿児島 本分崎島 15.6 14.3 200km 9.9 10.6 1000人あたりの大学生数(人) (2020年) 山 22.9 沖 縄 13.2 野 8.9 広 阜 21.9 14.9 19.1 10.2 12.8 14.2 24.0 10.5 14.3 08 *大学院生を含む 19

回答募集中 回答数: 0
英語 高校生

高校三年生の論理表現の前置詞についての問題です。 解答を教えていただきたいです。

A 基本的な前置詞 ① of 〈所属部分〉 のイメージ At last we reached the top of the mountain. (ついに私たちは山の頂上に到達した) She is a person of importance in the political world. (彼女は政界の重要人物だ) * of importance = important ②with 〈同伴〉のイメージ ・Who is that girl walking with Tom? (トムと一緒に歩いているあの女の子はだれですか ) That man with gray hair is Dan's father. of : 一部 of : 性質 ・特徴 with : 同伴「~と一緒に」 with : 所有・付属 「~を持った, 〜の付いた」| あの白髪の男性はダンのお父さんだ) *反意語は without (~を持たないで, 〜なしで) ・I should have brought an umbrella with me. with : 携帯 「~の手元にあって、~を身につけて (傘を持ってくるべきだった) We must handle these old books with (great) care. (私たちはこれらの古い本を (非常に)慎重に扱わなくてはいけない) ・I wash my hands with soap as soon as I get home. (私は家に帰るとすぐに石けんで手を洗う) ③through 通り抜ける〉 イメージ . Our train passed through a long tunnel. (私たちの乗った列車は長いトンネルを通り抜けた) Alice wants to travel through Japan. (アリスは日本中をあちこち旅行したがっている) 時間についても同様の用法がある。 ・ I was able to sleep soundly through the night. (一晩中ぐっすり眠ることができた) EXERCISES 1 with :「(様子・状態)でもって」 * with care carefully ( )に of, with, without, through のいずれかを入れなさい。 (1) Alex traveled (4 (2) No animal could live ( (3) Afriend ( . with : 手段 ・ 道具「~を使って」 through: 「~を通り抜けて」 through: 「~のいたるところを」 ←端から端までずっと through: 「〜の間ずっと」 ←始めから終わりまで ) Shikoku. 3 ) water. ) mine told me that Ms. Davis would get married. うわさ てんこう (4) The rumor about Lisa's transfer to another school spread quickly ( (5) Your advice was ( (6) Don't you have any money ) great use. Thank you very much. (7) A large herd of deer were running ( (8) Ellen solved a problem in physics (9) Please fill in the blanks ( (10) She is said to live in a big house ( )you? ) the forest. ease. ) a pen. ) a pool. 52 52 ) her class.

回答募集中 回答数: 0