学年

教科

質問の種類

数学 高校生

(2)の問題なんですけど、2枚目に撮ったところが分からなくて…私は解説の横に書いた手書きの図なんですけど、こうなると思って計算したら間違えてしまいました。なぜ3、5、aがあの場所になるのか解説してくだされば幸いです、宜しくお願い致します🙇

(例題79) (1) 次の三角形は鋭角三角形, 直角三角形, 鈍角三角形のいずれか a=3,b=10,c=8 3辺の長さが, 3, 5, a a この値の範囲を定めよ。 の三角形が鋭角三角形となるように正の数 E ポイント (1) 最大角は最大辺の対角( (2)鋭角三角形とは,三角形が成立し, かつ鋭角三角形 と考えます。鋭角三角形になる条件は, Aが鋭角かつBが鋭角 wwwww パターン(74) だからBになります。 三角形が成立しなければ 鋭角条件を満たしても 意味ないよね と考えます。 ポイント B C この三角形では,最大角はAかBかわからない。 Cだけはありえない 解答 ∴AとBの両方が鋭角になれば鋭角三角形!! (1)最大角はBである。 よって 82+32-102__27 cosB= 2.8.3 (2) 三角形の成立条件より, より、鈍角三角形。 48 負 [3+5>a ••• ① 3辺を図のようにおく 3+α> 5 ... ② C la+5>3 ...③ B (5) また,鋭角三角形になるための条件はa>0より 4 0<a<v34 (3) COSA= 3²+5²-a² 2.3.5 lcosB= 32+α²-52 >034-a>0 ...④ ->0a²-16>0 2.3.a これより,4<a<√34 ① (2) -202 4 √34 8 a >0より a>4 パターン79 鋭角三角形, 鈍角三角形 171

未解決 回答数: 2
数学 高校生

(イ)のところでなんでt²=1-2sinxcosxになるんですか?

しょう 98 第4章 三角関数 60 三角関数の合成(II) (1)ss のとき,f(s)=v3 cosx+sing の最大 小値を求めよ。 (2) y=3sin.rcos.r-2sinx+2cos r (OSIS) について =sincosz とおくとき,そのとりうる値の範囲を求め (イ)の式で表せ。 (ウ)の最大値、最小値を求めよ。 (1)sinx=t(または,cosx=t)とおいても!で表すことができ ません。 合成して,エを1か所にまとめましょう。 (2)IAので学びましたが,ここで,もう一度復習しておきま sing, COSIの和差積は, sin' + cos'x=1 を用いると、つなぐことができる。 解答 +cos.sin) その方程式を解 BLE-CORE-1 まし のにする。次に、 (1)(2)+/12--1 注 (i)は、 2sin 最大 99 11/12々を計算してもよい。この場合は、加法定理を利用 ) します。(1/2 2singを計算した方が早いです。 (2) (7) t=sincosr=√2 r-cosr=√2 sin (1-4) だから、 -sin(-4) :.-1≤t≤1 (イ) 2=1-2sin rcosェ だから 3 sin x cos x= (1. -(1-1)-2---21+ (") y=−³ (t+²²)²+13 (−1st≤1) 右のグラフより 最大値 12,最小値 -2 この程度の合成は、 すぐに結果がだせる まで練習すること 41 44 0 44 第4章 (1) f(x)=2(sin x cos T 合成する 2 T T +3 7 127 ポイント 12 12 0 最 I+ 3 12", 2018/1/27 すなわち のとき + 2 2 ( 最小値 2 演習問題 60 すなわち のとき 5 合成によって, 2か所にばらまかれている変数が1か 所に集まる y=cos' rx-2sincoss+3sinx (0≦x≦) ① について 次の問いに答えよ. (1) ① を sin2x, cos2cで表せ。 (2) ①の最大値、最小値とそのときのェの値を求めよ.

未解決 回答数: 0