学年

教科

質問の種類

数学 高校生

この問題の図示が難しくて出来ません 分数の三次関数のグラフの書き方を教えてください! お願いします!!

3次曲線と接線 99 とができるような, a, bの条件を求め, 点 (a, b) の存在する領域を図示せよ。 点(1,0)を通って, 曲線 y=x²+ax²+bxに異なる3本の接線をひくこ 精講 曲線 y=f(x)の接線の方程式は, 接点(t, f(t)) により決まります. このときの接線の方程式は y=f'(t)(x-t)+f(t) であり,これが点(α, b) を通ることから,t の方 程式 b=f'(t)(a-t)+f(t) ......(*) を得ることができます. この方程式をみたす tを 求めれば,その点における接線が1本ひけること になります。 すると, 3次関数のグラフでは接点 が異なれば接線も異なるので, 接線の本数=接点の個数 =方程式(*)の実数解の個数 ということになります。 解答> 解法のプロセス 接線の方程式 y=f'(t)(x−t)+ƒ(t) y=x³+ax²+bx y'=3x²+2ax+b 曲線上の点(t,t+at+bt) における接線の方程 式は f(t)=2t³—(3—a)t²—2at—b とおく. 3次関数のグラフでは接点が異なれば接線 も異なるので 点 (1, 0) を通る接線が3本ひける ⇔f(t)=0 が異なる3つの実数解をもつ ↓点(1,0)を通る 0=f'(t)(1-t)+f(t) ↓ (*) 方程式(*)が異なる3つの実数 解をもつ y=(3t²+2at+b)(x−t)+t³+at²+bt :: y=(3t²+2at+b)x-2t³-at² これが点 (10) を通るのは 0=-2t°+(3-a)t2+2a+bを通って接線をいく to your it のときである. 方 接線が3本存在する 225 yi f y=f(t)₁ KHUT

回答募集中 回答数: 0
数学 高校生

28(3)グラフが上手く書けなくて間違えてました、 この問題でどうやってグラフを作図するんでしょうか? 仕方が分からないので教えて欲しいです

105 426点 (1, -4) から放物線 C:y=x²-1 に答えよ。 (1) 2本の接線の方程式,およびそれぞれの接点の座標を求めよ。 (2) 2本の接線と放物線Cとで囲まれた部分の面積を求めよ。 き,次の問 [17 法政大) 〔類 11 武庫川女子大 427 曲線 y=x²-6x| と直線y=2x で囲まれた2つの部分の面積の和を Get Ready 424 めよ。 Platters 428 3次関数 y=2x-3x²12x について,次の問いに答えよ。 (1) この関数のグラフCのx=1における接線 l の方程式を求めよ。 (2) Clとの接点以外の共有点のx座標を求めよ (3) Clで囲まれる部分の面積を求めよ。 [ 類 17 摂南大) 429 2曲線City=(x-212) - 12. C:y=(x-212) 2012/2 の両方に接する直 線をl とするとき, 次の問いに答えよ。 (1) 直線ℓ の方程式を求めよ。 (2) 2曲線C, C2 と直線で囲まれた図形の面積Sを求めよ。 〔13 宮城教育大) よって, 求める面積は S1+S2= 32 3 428 104 +24=-3 テーマ 3次曲線と接線とで囲まれた部分の面積 Key Point 157] (1) y'=6x2-6x12 よって, x=1における接線ℓ の方程式は y-(-13)=-12(x-1) ゆえに y=-12x-1 (2) 2x3-3x2-12x=12x-1より 2x3-3x2+1=0 左辺は (x-1)2を因数にもつから (x-1)^(2x+1)=0 ゆえにx=1-1212 したがって, 接点以 外の共有点のx座標 1 はx=-2 (3) 右の図から 求め る面積をSとすると S=S'_{(2x-3x2-12x)-(-12x-1)}dx - 2 10 =(2x-3x2+1)dx= 線の方程式はy- すなわち ② から x [ {^² - x² + x ] ₁ y=(2s-1)x- y'=2x-5 よって,C2,12 線の方程式は y- 2-5t すなわちy=(2t-5 ③, ④ は一致するか (2s-1=1 - S2-- s=0, よって ③から (2) (1) から,直 の接点の座 直線ℓ C2 x座標は また, C と x-x-1 を解いて

回答募集中 回答数: 0