学年

教科

質問の種類

数学 高校生

(1)が分かりません。 f(x)=kとおいて、kとの交点が実数解になってるのですが、なぜそんな変形をしていいのですか?

なぜ こうで 例題219 高次方程式の実数解の個数 [2] kを定数とする。 3次方程式 2x-6x+1-k = 0 ... ① について (1) 方程式 ① の異なる実数解の個数を調べよ。 ○ (2) 方程式 ①が異なる2つの負の解と1つの正の解をもつようなkの値の 範囲を求めよ。 Action 方程式f(x) = k の実数解は, y = f(x)のグラフと直線y=k の共有点を調べよ 解法の手順・ ・1方程式をf(x)=kの形に変形する。 2f(x) の増減, 極値を調べ y=f(x)のグラフをかく。 32のグラフとy=kの共有点の個数を調べる。 解答 (1) 方程式 ① は 2x-6x+1 = kと変形できるから ① の異なる実数解の個数は, y=2x-6x+1のグラフと 直線y=kの共有点の個数と一致する。 f(x)=2x-6x+1 とおくと f'(x) = 6x² - 6 = 6(x+1)(x-1) f'(x) = 0 とおくと x = -1, 1 よって, f(x) の増減表は次のようになる。 -1 1 f'(x) + 20 20 + f(x) 5 △ -3> 増減表より, y=f(x)のグラフ は右の図のようになるから, ① の 異なる実数解の個数は x ... ... - (-3<k<5のとき k=-3,5のとき lk <-3.5<bのとき 3個 2個 1個 YA 10 -3 15 1 ly=f(x) y=k 例題218, JA115 x f(x) = k の形に変形す る。 y=f(x) の増減を調べ てそのグラフをかく。 YA 15 k x 1個 -2個 3個 -2個 1個

回答募集中 回答数: 0