学年

教科

質問の種類

数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
数学 高校生

紫の部分の式はどうやって求めたかが分かりません。公式なのか条件なのか教えて頂けると嬉しいです🙏🏻

全国統一高校生テスト 6月 全学年統一部門 数学 II BC 自己 第2回 第4 数列 第4 出題のねらい からまでのS の で与えられたときの を求められるか、 (2)+(-1)+26 +1がの で与えられたとき を求められ (2) るか。 解説 とより。 -SS (-0 が成り立つ。 であるとすると ウエ --12-1- である。また、のとき、 a-So-Sa -(+2)-(-11+26-11 +2-(-2x+1+2x-2) -21- であるから、②のときも成り立つ。 したがって、一般は2+1である。 について -5-2 2のとき。 a-S-S (2010-10-011 2x-1 であり、2*2-1-1 であるから、 1つの 式で表せない。 ⑩について Q-5-2 2のとき a-S-S -3-1-0-1 -2-3 であり、2-2-3であるから、 1つの武 ②について =S=1 のとき a-S-Sp ww-1) であり、この人は1のと なわち、一般は1つの できない。す せない 以上より、一般が1つの式で表せるものは、 である。 -- (22) 1つの せるということは、下の式に を代入したものと上の式が一致する場合 すなわち、 S-0 が成り立つ場合である。 Tab+(x-DA+ (-1,2,3-) Tail(r-DA+( ++1% +++1-s であるから、 T-T -[-(-1)+(-1)-(-2 +1(x-2-(-301 +0-238-2 ロー+1 ++ 7.='+3+1であるとする。 と T-T (x+3 +1-10-13'30-1+1] x'+3+1) (x-3e'+3m-1+3-3+1) -(x²+3x+1)-(+63) であるから、より 4-3-344- が成り立つ。これより A-X-1-3-1+4 =34-6x+3-3 +3+4 -3-9+10 であるから、3のとき、 --+--+100 である。 ここで より であるから、 A-1'+3・1+1-5 あるから、 キーケ ++ 2h+b=2+3−2+1=8+6+1=15 2-5+4-15 あ よって、家は、 二人のときのときも成り立たない。 アドバイス 数列の和と一般 る。 la.) からまでのをSとす このとき、 a.-S.-S. — ここでは定義されないから、 のときは ①が成り立つとはいえない。 が与えられて数 laを求めるときから求めることは できない。 から求められる。) ①が成り立つ しょ このことをきちんとできているか見る 問題である。 (2)で間違えた人は、成り立つ 注意 しよう。 表 自己探 第2 第5 第6 第7月 ▲上に戻る

未解決 回答数: 1
数学 高校生

条件の[1][2]はわかったんですけど[3]がよくわかりません。どういう計算で求めているのか教えてください!

(交わる 囲を求めよ。 p.134 応用例題 7 例題 放物線と軸の共有点の関係 24 2次関数y=x2-2mx+m+2のグラフとx軸のx>1の部分が, 異なる2点で交わるとき,定数mの値の範囲を求めよ。 考え方 f(x)=ax2+bx+c, D=62-4ac とする。a>0のとき, 放物線y=f(x)とx 軸との共有点のx座標をα, β(α<B) とすると,α,βと数々の大小関係につ いて ① ① α,Bがともにんより大⇔D>0, 軸の位置>k, f (k)>0 (2) α, βがともにんより小⇔D>0,軸の位置 <k, f(k)>0 ③kはαとβ の間 ⇔f(k)<0 (3) + a 軸β a 軸 B + k x k k x B x 解答 f(x)=x²-2x+m+2とするとf(x)=(x-m)²-m²+m+2 y=f(x) のグラフは下に凸の放物線で,軸は直線 x=mである。 この放物線とx軸のx>1の部分が,異なる2点で交わるのは,次の [1], [2], [3]が同時に成り立つときである。 [1] グラフと x 軸が異なる2点で交わる。 2次方程式f(x)=0の判別式をDとすると D=(-2m)2-4(m+2)=4(m²-m-2) D>0から m<-1,2<m ***** ① [2] 軸x=mについて m>1 ***** [3] f(1) > 0 すなわち 12-2m・1+m+2> 0 よって 3-m>0 したがって m<3 ****** ③ 3-m m x ① ② ③ の共通範囲を求めて 2<m<3 】3つの条件のうち [1], [2], [3] のそれぞれがない場合, グラフとx軸の 共有点の位置についてどのような場合が考えられるだろうか。

未解決 回答数: 1
物理 高校生

大問27と大問28が何回解説読んでも分かりません、、 特に分からない点は式の変形(大問27の(3))となんでこの公式を使うのかです!

27 鉛直投げ上げ 数 p.32~33 27 小球を初速度 24.5m/sで鉛直上向きに投げ上げた。 重力加速度の 大きさを9.80m/s2 とする。 (1) 鉛直下向きに 4.9m/s (2) 30.6m (1) 3.00 秒後の速度 (速さ [m/s] と向き) を求めよ。 (2) 小球が達する最高点の高さん [m] を求めよ。 (3) 1.00 秒後と 4.00 秒後 (3) 投げ上げてから高さ19.6mの所を通過するまでの時間t[s] を求 めよ。 v=24.5-9.80×3.00= -4.9m/s (1) 「v=vo-gt」より 鉛直下向きに4.9m/s (2) 最高点では小球の速度は0となるので, 最高点に達するまでの 時間は [v=vo-gt」 より よってt=2.50s 0=24.5-9.80t 「y=cot-- 11/1/20より 1 h=24.5×2.50- -×9.80×2.502≒30.6m 2 (3) 小球は 19.6mの点を上昇しながら通過し 最高点に達した後, 下降に転じ再び 19.6 mの点を通過する。 よって求める時間は 2つとなる。 30.6m 19.6m 「y=vot-122gt」より 1 19.6=24.5t- ×9.80×2 2 t2-5.00t+4.00=0 (t-1.00) (t-4.00)=0 鉛直投げ上げの式は鉛直上向き を正としているので、速度が負 の場合は、鉛直下向きに運動し ていることを表す。 (2)の別解)-v=-2gy」 より 02-24.52=-2×9.80xh よって ん≒30.6m よってt=1.00, 4.00 したがって 1.00 秒後と 4.00 秒後 28 鉛直投げ上げ 教 p.32~33 28 ビルの屋上の点Pから物体を鉛直上向きに速さ 4.9m/s で投げた。 重力加速度の大きさを 9.8m/s2 とする。 (1) 1.0秒 (2) 29m (1) 投げてから、 再び点Pにもどるまでの時間は何秒か。 (2) 投げてから3.0秒後に地面に達したとすると, 点Pの地面から の高さは何mか。 (1) 「y=oat-1/12gf」より、点Pにもどるまでの時間を f[s] とす 2 ((1)の別解) 再び点Pにもどっ てきたときの物体の速度は - 4.9m/s だから,「v=vo-gt」 より ると 0=4.9t- ×9.8×2 よってt=1.0s (2) 「y=vot-1/12gt2」より,点Pの地面からの高さを ん 〔m〕 とする 1 とん=4.9 × 3.0 - ×9.8×3.0²=-29.4≒-29m よってt=1.0s 2 よって h=29m 4.9=4.9-9.8t

回答募集中 回答数: 0