学年

教科

質問の種類

数学 高校生

画像3枚目のように比をつかって解いたのですが、 PR/AB=10/21になってしまいました。 この考え方は間違っていますか?教えてください。

分散、標準偏差 入ります。 ア, イ, m」 と標準偏差のは 450 イウ,...で示 1.1/2(1-2)=125=5 大きいから、 Z5 従う。 また, X=60 のとき X-50とすると、 は近似的に標準正規分 V(X),標準偏差 (X)は E(X)=np V(X)=np (1-p 確率変数Xが二項分布 B(n, 従うとき,Xの期待値 E(X) OP= 20A+OB 1+2 OA+OB 内分点の位置ベクトル 次に,点は線分AQ の中点であるから, AQ2AH であり 線分ABをmin に内分する点を Pとすると OQ = OA + AQ =OA+2AH OP= "OA+mOB m+n ... ① 60-50-2 5 B 50,212) に従う。よって、どの期待値mと標準偏差のは X-np √np (1-p) 正しいとすると、1回の試合でAが勝つ確率は であるから, Y 従うとき,Z= 確率変数Xが二項分布 B(n, (X)=√mp(1-p) 二項分布の正規分布による近 点は直線 OP 上の点であるから, kを実数として 0 OH = k OP とすると が大きいとき, 確率変数は と表される。このとき AH-OH-OA - kOP - OA = k(²/OA+/+OB)-OA B mPn 点Pが直線AB上にある H B ⇔AP = AB 的に標準正規分布 N(0, 1)に従う = (k-1)OA+KOB --2 を満たす実数k が存在する。 ベクトルの差 50.12=25 ここで,点Qは直線OP に関して, 点Aと対称な点であるから, OPAQ であり AB = OB-OA OPAH (③) Y-25 50は大きいから, Z2= 5 とすると, Zは近似的に標準正規分 √2 したがって 0, 1)に従う。 また, Y=30 のとき 30-25 Z₂ = 2=12 5 =1.4142≒1,414 .. ② OP.AH=0 (OA+/OB){(1/2-10A+/kOB}=0 (20A+OB)・{(2k-3)OA+kOB}=0 (4k-6) OA 2+(4k-3) OA・OB+k OB=0 (4k-6)×12+(4k-3)x1+k(2)=0 8k-15 - =0 P(-1.96 ZS 1.96) = 0.95 解法の糸口 り,有意水準 5% の棄却域は Z≦-1.96 または 1.6 Z ..③ ここで 2009年から2018年の全100 試合の中で実際にAが勝ったのは 24+3660 (試合) 正規分布表を用いて棄却域を 求め, (1) (2)それぞれ求めた Z1,Z の値が棄却域に入るか どうかを調べる。 15 k = 16 これを②に代入して AH=438×168-10A+1/3×1/8OB ①の値は③に入るから, 仮説Hは棄却される。 また, 2019年から2023年の全50試合の中で実際にAが勝ったのは30試 ②の値は③に入らないから, 仮説Hは棄却されない。 以上により, 有意水準 5% の検定において, (1) では仮説Hは棄却されて (2) では仮説Hは棄却されない (①)。よって,(1)ではAとBの間に力の差があ ると判断でき, 2)ではAとBの間に力の差があるとは判断できない (①) 標本から得られた確率変数の値が 棄却域に入れば仮説を棄却し、 棄 域に入らなければ仮説を棄却しない 数学Ⅱ 数学 B 数学C 第6問| ベクトル 解法 内積の定義により OA・OB = |OA||OB|cos ∠AOB 1 =1x√2 x 1 2√2 2 また、点Pは辺AB を 1:2に内分する点で あるから 0 A 'B ベクトルの内積 探究 ①でない2つのベクトル なす角を90° の 180° とする と ab=a||6|cose =-3-OA+16 OB さらに, ① に代入して OQ=OA+2(-20A+16OB) =OA+OB 次に,点Rは直線OQ 上の点であるから, 実数として OR = 1OQ と表される。このとき OR = (OA+OB) -1108 +108 ベクトルの垂直条件 ①でない2つのベクトルに ついて abab=0 ・B R 学8年 解法の糸口 OQ をもとに OR をOA と OB を用いて表すことを考える さらに、 PR を AB を用いて す。

未解決 回答数: 1
数学 高校生

青色で囲んだ式の意味がわかりません。 教えてください。

例題 158 約数の個数 金 **** -(1) (a,+α2)(b1+b2+bs+ba) (c) +C2+cs) を展開すると、 異なる項は何 個できるか. T(2) 200の約数の個数とその総和を求めよ. また, 約数の中で偶数は何 個あるか. ただし, 約数はすべて正とする。 考え方 (1) (α)+α2)(b,+b2+63+ba) (Ci+C2+C3) たとえば, (a1+a2)(b1+b2+bs+ba) を展開してできる arbī に対して, ai*bi (C1+C2+cs) の展開における項の個数は3個である. (a1+a2)(61+62+by+b4) を展開するとき, ab」 のような項がいくつできるか考 えるとよい。 (2)1か2か22 か 2 × 1か5か52 であるが, (1+2+2+2)(1+5+52) を展開すると 1×1, ②×1,4×1, 8×1, 1×5, ②×54×58×5, 1×25,2×254×25,8×25 がすべて一度ずつ現れる. したがって, 約数の総和は,次のようになる. ( 1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=23×52 より 約数が偶数になるのは, 1 以外の 23 の約数を含むときである ら, 2か2か23 を含む約数の個数を求めればよい. 解答 (1) (a1+az)(b1+b2+bs+b4) を展開してできる項 の個数は, 2×4(個) である. a1, a2の2通り b1, b2, b3, b44 また, (a1+a2)(b1+b2+63+64) の1つの項 abi に対して 全長901 aibi(ci+C2+c3) C1, C2 C3の3通り の展開における項の個数は3個である. 01 よって, 求める項の個数は, 2×4×3=24 (個) (2)200を素因数分解すると, 200=23×52 (3+1)×(2+1)=12 積の法則 Focus より、約数の個数は, 12個 また、約数の総和は, 1 2¹ 22 23 1 1-1 2-1 2-1 23.1 (1+2+2+2)(1+5+52)=465 また, 偶数の約数は, 2か22か23 を含むもの だから、 3×(2+1)=9 より, 偶数の約数の個数は, 9個 5' 15'25'25'23.5 52 1.52 21.5 22.5 23.5 偶数になるのは,1以 2°の約数を含むとき 約数の個数は、素因数分解し,積の法則を利用する

未解決 回答数: 1