学年

教科

質問の種類

数学 高校生

数IIの円の問題です (1)の場合分けで【1】が2点で接する場合、重解とありますがこれはいつも成り立つのでしょうか それともこの時だけなのでしょうか

要 例題 95 放物線と円の共有点・接点 放物線y= x+αと円x+y=16 について,次のものを求めよ。 この放物線と円が接するときの定数αの値 (2) 4個の共有点をもつような定数αの値の範囲 CHART & SOLUTION 放物線と円 共有点 実数解 接点⇔重解 基本88 1点で この問題では,xを消去して, yの2次方程式 4(y-a)+y2=16 の実数解, 重解を考える。 接する なお、放物線と円が接するとは,円と放物線が共通の接線をもつと この問題の場合, 右の図から, 2点で接する場合と1点で接す る場合がある。 2点で接する 解答 (1) y=-x+αから=4(y-a) ① ただし,x220であるから [2] a=4 yza [2] ① を x+y=16 に代入して 4 a=-4/ f a4 のとき ③は 2+4y-32=0 すなわち (y-4) (y+8)=0 から, y=4 (適), -8 (不適) で重解をもたない。 4(y-a)+y2=16 よって y'+4y-4α-16=0 ... ③ [1] 放物線と円が2点で接する場合 2次方程式 ③は重解をもつ。 ③の判別式をDとすると =22-(-4a-16)=4a+20 4 D=0 から a=-5 ** しかし、 -4 の x2+y2=16 連立方程式で,yを消去す ると ~[1] =16 a=-5 整理して x(x2+48)=0 この4次方程式は, 2重解 このとき, ③の重解は y=-2 であるから② に適する。 x=0 をもつから, 点 ( 0, 4) [2] 放物線と円が1点で接する場合 図から,点, 4), (0, -4) で接する場合で α=±4 [1] [2] から, 求めるαの値は a=±4,-5 (2) 放物線と円が4個の共有点をもつのは,上の図から,放 物線の頂点が,点 (0, -5) 点(0, -4) を結ぶ線分上 (端 点を除く)にあるときである。 よって、 求める定数αの値の範囲は -5<a<-4 RACTICE 950 で接していることがわかる。 同様に, α-4のときx についての4次方程式を導 くと -16x2=0 = 0 すなわち(16) (2重解),±4 から,x=0 をもつから, 点 (0, -4) で 接していることがわかる。

回答募集中 回答数: 0
生物 高校生

⑴の考え方がわからないです。数字が近いものを選ぶなら、3.2.1の順番ではないんですか?何故0の①がイに当てはまるのでしょうか?

Proce 答えよ。 (1 3 (4 基本例題25 系統樹と分類 例題 解説動画 動物 →基本問題 138 表は4種の生物①〜④に共通して存在するあるタンパ 生物 ①0 ① ク質のアミノ酸配列を比較し,2種の生物間で異なるアミ ノ酸の数を示したものである。次の各問いに答えよ。 ② ③ ④ 2 50 0 (1)表の値と分子時計の考え方を用いて,4種の生物の系 ③3 25 54 0 統樹を作成した(右図)。ア~ウとして最も適当な生物を ①~③の番号で答えよ。 4 27 46 10 0 19 (4) (2) このような方法で作成した系統樹を,特に何というか 答えよ。 (3)種は,分類の基本単位である。 種と界の間の分類階級 を,下位から順に5つ答えよ。 第7章 ウ (4)種は,リンネが提唱した二名法にもとづいた学名を用いて表す。 学名で記載する 2つの名称は何か答えよ。 考え方 (1) タンパク質のアミノ酸配列の違いを比較した場合,その異な るアミノ酸の数が大きいものほど種として分岐してからの期間が長く、小さ いほど期間が短いことを示す。 したがって,④と類縁関係が最も近い生物は ③となり,遠い生物は②となる。 (4)学名は、属名と種小名をギリシャ語また はラテン語で記述することが多い。 解答 リア… ③ イ・・・ ① ウ・・・② (2) 分子系統樹 (3)属,科, 目,綱,門 (4)属名,種小名 生物の 甘木頭 石田 基本問題 120 1

回答募集中 回答数: 0