学年

教科

質問の種類

数学 高校生

なぜ81の(2)と82の(2)で場合分けのやり方が違うのですか?

138 基本 例題 81 2次関数の最大・最小 (3) 00000 αは正の定数とする。 0≦x≦a における関数 f(x)=x-4x+5について、次の 問いに答えよ。 (1) 最小値を求めよ。 最大値を求めよ。 指針 区間は0≦x≦a であるが, 文字αの値が変わると, 区間の右端が動き、 最大・最小と なる場所も変わる。よって、区間の位置で場合分けをする。 (1)y=f(x)のグラフは下に凸の放物線で、軸が区間のさまに含まれれば頂点で 小となる。ゆえに、軸が区間 0≦x≦αに含まれるときと含まれないときで場合分 をする。 [1] [2] |軸 軸 軸が区間 の外 軸が区間 内大量 #31 大量 最小 -1 |最小 67x8 (2)y=f(x) のグラフは下に凸の放物線で,軸から遠いほど受)を の値は大きい(右の図を参照)。 よって、区間 0≦x≦α の両端から軸までの距離が等しくな(S 軸 [2] 4≧2のとき [2] 図[2]のように, 軸 x=2は区間 に含まれるから, x=2で最小と なる。 最小値は [1] [2] から f(2)=1 f0<a<2のとき a2のとき 最小 x=0x=2x=a x=αで最小値α² -4a+5 x=2で最小値1 (2) 区間 0≦x≦a の中央の値は 1/2 である。 a [3] 01/12 すなわち <a<43] 頂点で最小。 (1) 139 最大 <指針 ★★ の方針。 区間 0≦xaの中央 20 が、軸 x=2に対し左右 どちらにあるかで場合 する のとき 図 [3] のように,軸 x=2は区 間の中央より右側にあるから, x=0で最大となる。 最大値は a f(0)=5 [4] =2 すなわちa=4 のとき [4] 図 [4] のように,軸 x=2は区 x = 0 x=a =1/2x=2 x=0の方が軸から 分けの境目となる。 るような (軸が区間の中央に一致するような) αの値が場合 ★ = 近 遠 x=0,4で最大となる。 間の中央と一致するから, 最大 最大 <軸と x = 0, a 等しい。 [3] 軸が区間の 中央より右 [4] 軸が区間の 中央に一致 軸 区間の両端 から軸まで の距離が等 しいとき。 [5] 軸が区間の 中央より左 軸 最大値は f(0)=f(4)=5 x=0 x=4 x=21 最大 [5] 2< // すなわちα>4のとき [5] 最大 最大 区間の 区間の 中央 [5]のように,軸 x=2は区 間の中央より左側にあるから, 軸 ●最大 Ax=a0) 中央)+(1 区間の 中央 x=αで最大となる。 最大値は [3]~[5] から f(a)=d²-4a+5 x = 0 x=a x=2x=0 20 f(x)=x-4x+5=(x-2)2+1 解答 y=f(x)のグラフは下に凸の放物線で,軸は直線x=2 [1] 0<a<2のとき (1) 軸x=20≦x≦aの範囲に含まれるかどうかで場合 分けをする。 f(x)=x2-4x+22 -22+5 0<a<4のとき x=0で最大値5 この 最小 a=4のとき x=0,4で最大値5 にた 指針の方針。 [1] 軸x=2が区間0≦x≦a に含まれるかどう a4のとき x=αで最大値α-4+5 10.0

未解決 回答数: 1
数学 高校生

なぜ75の答えはどちらでもいいのに76の答えは1つしかダメなんですか?

■0周年 IDE 130 海にま 指針 シン 昔の活 あと1 基本 例題 76 2次関数のグラフの平行移動 (2) 20 2次関数y=2x2+6x+7 y=2x2-4x+1 ①のグラフは,2次関数 000 ②のグラフをどのように平行移動したものか。基本事項 x 軸方向に 1, y 軸方向に -2 だけ平行移動すると,放物線 C:y=2x2+8x+9 に移されるような放物線Cの方程式を求めよ。 (1) 頂点の移動に注目して考えるとよい。 まず,①,② それぞれを基本形に直し、頂点の座標を調べる。 (2) 放物線Cは, 放物線 C を与えられた平行移動の逆向きに平行移動」 ある。 p.124 基本事項 3 ② を利用。 (1) ① を変形すると y=2(x+3)²+55/5 5 ①の頂点は点 (12/31) y=2(x-1)2-1 ②を変形すると ②の頂点は (1,-1) 3-2 vico 5-2 ② [9] 0 1 x ② のグラフをx軸方向に p, y 軸方向に q だけ平行移動 したとき, ① のグラフに重なるとすると 1点 グラ した。 ①:2x2+6+7 =2(x2+3x)+1 =2+2+3+ -2.1 ②:2x2-4x+1 ① 点 x軸 3軸 原点 ② 関 x 原 車 解説 ■ 対称移 平面上 =2(x²-2x)+すこと =2(x²-2x+1 特に, -2-12+1 ヤー ミチー 解答 チャート 原点を (a 15 1+p=123-1+g=/2/27 (*) 頂点の座標の ゆえに p=− q= 5 2 7(*) 見て, 2 3 55 (S- -1=- よって,①のグラフは,②のグラフをx軸方向に一 5 2 2'2 7 2 としてもよい。 放物 2 軸方向に だけ平行移動したもの。 したがって y=2x2+12x+21 JST y=2(x+3)+3_ (2)放物線Cは,放物線 C を x 軸方向に -1, y 軸方向に 2だけ平行移動したもので,その方程式は』(S) メー y-2=2(x+1)+8(x+1)+9_ 9 (8+x)s- 別解放物線 C の方程式を変形するとy=2(x+2)2+1 よって,放物線 C の頂点は点(-2, 1) であるから,放 物線Cの頂点は 点(-2-1, 1+2) すなわち 点(-3, 3) ゆえに、放物線Cの方程式は ly-y-2 換え。 頂点の移動に着 法。 X す 重 軸方向に1, 放物 (1- y軸方向に - 2 得 C 軸方向に と C 軸方向に2 Q [x→x-(-1) す

未解決 回答数: 1
数学 高校生

(4)でなぜ分母の4aが消えているんですか?

基本 例題 74 2次関数の 2次関数y=ax2+bx+cのグラフが右の図のようになるとき, 次の値の符号を調べよ。 基本例 b2-4ac (1)a b C a+b+c X /p.124 基本事項 2 a-b+c 放物線y=- れる放物線 次の 指針 グラフが上に凸か下に凸か、頂点の座標,軸の位置,座標軸 との交点などから判断する。 |指針 解泪 y b2-4ac (1) αの符号 α>0⇔下に凸 a<0⇔上に凸 b (2)の符号 頂点のx座標- - に注目。 2a αの符号とともに決まる。 I 4a a+b+c-- -1 0 C 1 b 2a 上に凸 1 (3)c符号y軸との交点が点 ( 0, c) (4)62-4ac の符号 頂点の座標 - (5)a+b+cの符号 αの符号とともに決まる。 la-b+c T+GS+ S y=ax2+bx+cでx=1とおいたときのの値。 y=ax2+bx+cでx=-1とおいたときのの値。 b2-4ac に注目。 4a (6) a-b+cの符号 解答 (1) グラフは上に凸であるから a<0 (*) y=ax2+bx- 解答 b (2) y=ax2+bx+c(*) の頂点の座標は 2a' b2-4ac 4a b 頂点のx座標が正であるから ・>0 b2-4ac Aa 2a よって b 2a <0 (1)より,a<0であるからb>0 AB > 00 >0⇔AとB 同符号 (3) グラフはy軸とy<0の部分で交わるから c<0 A <OAとBは b2-4ac B 符号。 (4) 頂点のy座標が正であるから (1) より, a< 0 であるから b2-4ac > 0 (5) x=1のとき 4a >0 (4) グラフとx 軸が 異なる2点で交わ から ac y=a・12+6・1+c=a+b+c グラフより, x=1のときy>0であるから a+b+c>0 (6) x=1のとき y=α・(-1)'+6(-1)+c=a-b+c グラフより くのときゃくであるから を導くことができる 詳しくは p.175を 照。

未解決 回答数: 1
英語 高校生

対数関数の問題です。 194例題についてですが、最後実数解の個数が3個4個になっている理由がわかりません。y=aとy=-t2+2tの共有点の個数=実数解の個数だと思っていたのですが、

000 演習 例題 194 対数方程式の解の個数 の解をも 本女子大] 基本173 なるとの る。 よい。 00000 aは定数とする。 xの方程式{log2(x2+√2)}-210g2(x2+√2) +α=0 の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x+√2)=t とおくと, 方程式は t2-2t+α=0 ...... (*) 基本183 22 から, tの値の範囲を求め, その範囲におけるtの方程式 (*)の解の個 数を調べる。 それには, p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 log2(x2+√2)=t t2-2t+α=0 ① とおくと, 方程式は より,x2+√√2 であるから log2(x2+√2) log2√2 y=f(t) したがって ② また、①を満たすx の個数は,次のようになる。 = 1/12 のとき x=0の1個, 311 20 t -2)²+5a-10 11/23のときx>0であるから -2t+α=0から 2個 -t2+2t=a x2+√22より x=2√2 であるから 1/1/2のとき x=0 t= 11/21のときx>0 よってx=±√2-√2 y↑ よって、②の範囲における, 1 放物線y=-t+ 2t と直線y=a 3-- y=a <直線y=α を上下に動か 4 の共有点の座標に注意して, a して共有点の個数を調 べる。 方程式の実数解の個数を調べると, 01 1 32 t 2 2 a>1のとき0個; 5a+6 3 a=1, a<- のとき2個; 共有点なし。 11/23 である共有点1個 3 る。 4 a=2のとき3個; 3 <a<1のとき4個 2 11/23 である共有点2個。 つの実数解をも a. 6は定数とする。 xの方程式 (10g2(x2) -alog2(x+1)+a+b= 0 が異なる 2つの実数解をもつような点 (a, b) 全体のを,座標平面上に図示せよ。 p.312 EX 125 5章 33 関連発展問題 城 に

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。教えて下さい。

実戦問題 10 軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x) = x +2ax+3α² 4 の区間 0≦x≦4 における最大値を M, 最小値を とする。 (1)a=1のとき,M = ア m= イウ である。 (2) 放物線y=f(x) の頂点の座標は α<キクのとき M=ケ I a. a² 力 であるから,最大値 M は コ a≧ キクのとき また, 最小値 mは M = サ a² + a+ スセとなる。 a<ソタ のとき m= チ a² + ツ α+[テト] ソタ ≦a<ナ のとき a≧ナのとき m= a² m = ネ a² - となる。 (3)αの値が変化するとき、 M-mは α = ハヒ のとき最小値フ をとる。 解答 (1) α = -1 のとき f(x)=x²-2x-1=(x-1)2-2) よって, f(x) は区間 0≦x≦4 において> y=f(x) 7 放物線y=f(x)の頂点の座標は (-a, 2a²-4) (S-1) Key 1 区間 0≦x≦4 の中央の値はx=2であるから, f(x) の区間 0≦x≦における最大値 M は (i) -a >2 すなわち a < 2 のとき M = f(0)=3a²-4 (ii) -α ≦2 すなわち a≧-2 のとき M = f (4) = 3a² +8a+ 12 次に,f(x)の区間 0≦x≦4 における最小値mは 最大値 M = f(4) = 7, 最小値 m = f(1) = 2x8+z(+5) (2) f(x) = (x+α) +2a2-4 と変形できるから 01 -1 4x -2 (i) y y=f(x)! Key 1 (!!!) -α > 4 すなわち α < 4 のとき O 2T4 a (ii) YA y=f(x) PA m=f(4)=3a² + 8a +12 (iv) 0 <la≦4 すなわち -4 ≦a <0 のとき m=f(-α)=2a2-4 (via すなわち a≧0 のとき m = f(0)=3a²-4 (3)(2)(i)~(v) より, M-mの値は M-m4 01 (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4 ≦a <-2 のとき M-m=3a²-4-(2a²-4) = a² (ウ) −2≦a <0 のとき M-m=30°+8a + 12 - (2α-4) = (a+4)2 (エ) a≧0 のとき M-m=3a²+8a+ 12-(3a²-4) = 8a+ 16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは a=-2 のとき 最小値 4 () a 12 4 x y=f(x) 0 44X a 16 (iv) y y=f(x) 0 a 4 x (v) y 2 0 a y=f(x) a0 4 X 6

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。 教えて下さい。

実戦問題 9 区間が変化する2次関数の最大・最小 2次関数 f(x) = x-6x-3a +18 について (1) y=f(x) のグラフは,点(ア at ウ 1)を頂点とする下に凸の放物線である。 (2)a≦x≦a+2 における関数 f(x) の最小値をm(a) とする。 m(a) = a². オ]a+[カキ] (i) a< I のとき (ii) エ ≤as のとき m(a) ケコ α+サ (iii) <b ク m(a) = a² シ α+スセ (3)0≦a≦8 の範囲でαの値が変化するとき, m(a) は 中 ナニ a = タ のとき最大値 [チツ] a= のとき最小値 である。 ヌ ネ また, a = " 八 のとき m(a)=4 となる。 解答 Key 1 2 (1) f(x)=x-6x-3a +18= (x-3)2-3a+9 よってy=f(x) のグラフは,点(3, -3+9)を頂点とする下に凸軸は直線x=3 の放物線である。 a +2 <3 すなわち a <1 のとき m(a)=f(a+2) =(a-1)2-3a+9=d-5a+10 =(a-5)²+ 15 (ii) a ≧3≦a +2 すなわち 1≦a≦3のとき 0=10... m(a) = f(3) = -3a+9 0> (1-0)(+0) a3のとき m(a) = f(a) = a²-9a+18 S = 2 9 9 4 (3)(2)(i)(ii)より,0≦a≦8の 放物線の軸が (i) 区間より右にある (i) 区間内にある () 区間より左にある の3つの場合に分けて考える。 y (i) y=f(x) IS Oa 3 a+2 右の図のようになる。 よって、この範囲でm(α) は 範囲で y=m(a) のグラフをかくと 最大 (ii) 10% y=f(x) y=m(a) 06 α = 0, 8 のとき最大値 10, 9 9 y=4 2 a=- のとき最小値 4 また、グラフより m(α)=4 となる 9% 201 3 8 αの値は (ii), () の範囲にそれぞれ1 つずつ存在し 9 4 a 3 a+2 (iii) i y y=f(x) (ii) 1≦a≦3のとき -3α+9=4 より α = 5 0 3 a X 3 これは, 1 ≦a≦ 3 を満たす。 a+2 (iii) 3<a≤8 D E F STA α2-9a +18=4 より α-9a +14=0 よって (a-2) (a-7)= 0 3 <a ≦ 8 であるから a = 7 5 (ii), (ii)より, α = 3' 7 のとき m(a)=4 となる。

回答募集中 回答数: 0