学年

教科

質問の種類

物理 高校生

問題集17についてです (4)の解答で①を代入してと書いてありますが、①は切断する前の関係なのになんで切断後も使えるんですか?

14 (イ) 糸yの張力はいくらか。 (ウ)Bが板を押している力はいくらか。 16 基 水平な床から 30°傾いた斜面上に 質量mの物体Pがあり, 質量Mの小 物体Qと滑らかな滑車をかいして糸で 結ばれている。 Pと斜面の間の静止摩擦 係数を / 動摩擦係数をとし、重 力加速度をg とする。 2/3 力学 15 (武蔵工大+北海道工大) 0=v+α'tz より 141 17 等速度運動 (等速直線運動) では力のつり合いが成りたつ。 浮力 (1) Aに注目すると T=mg (2) B に注目すると F=Mg+T= (M+m)g ... ① Mg, m P 130° 浮力の公式 F=pVg より V=F_M+m 浮力は周りの流体 の密度で決まる B T pg P (3)Aは初速での投げ上げ運動に入る。 地面の座標は x=-h だから,公式を用いて T A mg (1) PQ が静止しているためのMの範囲をm を用いて表せ。 (2)味からのQの高さをおとしごととして静かに放すと 下がり始めた。Pが滑車に衝突することはないものとする。 (7)Qの加速度の大きさと、Qが床にするときの速さ よ。 か を求め (イ) Q が床に達した後,Pはやがて斜面上で最高点に達して止まった。 Pが動き始めてから止まるまでに移動した距離とかかった時間 を求めよ。 -h=vto+(-9)to gt-2 vto-2h=0 この方法を 3- マスターしたい to >0より to = 1/1 (u+vo+2gh) 9 (4) 糸が切断された後の気球の運動方程式は, 加速度をαとして Ma=F-Mg を代入して a= g えるの 公式③より v₁²-v² = 2 ah .. U₁ = 02+2mgh V M -hmm (富山大 + 横浜国大) 18 (2) 17 質量 M の気球B (内部の気体も含む)が、質量 mの小物体Aを質量の無視できる糸でつるして, 定の速さで上昇している。 重力加速度をg とし 空気の抵抗および物体Aにはたらく浮力は無視でき るものとする。 (1) 右のようになる (Mg, N などの文字は不要)。 N = Mg cos 0 だから 垂直抗力N 空気抵抗力kv B Ma=Mg sin 0-Mg cos 0-kv ...⑰ (3) 等速度運動では力のつり合いが成りたつ。 斜面 方向について Mg sino=μMg cos 0 + kv 動摩擦力 μN A .. v= Mg k (sin0-μ cos0) ... ② 等加速度 重力 3 Mg ではない (1) 糸の張力Tはいくらか。 (2) 気球Bにはたらく浮力Fはいくらか。 また,外部の空気の密度を p とすると,気球の体積Vはいくらか。 物体Aが地面からんの高さになったとき,糸を切断した。 (3) Aが地面に到達するまでに要する時間toはいくらか。 (4) 糸が切断された後, 気球がさらにんだけ上がったときの気球の速 さひはいくらか。 (信州大 ) 別解 等速度では α=0 なので, ①よりを求めてもよい。 (4) t=0では,v=0 なので抵抗力はなく, 加速度を α とすると, ①より Ma = Mg sin 30°μ Mg cos 30° ...3 一方,図2の v-t グラフでは接線の傾きは加速度を表すから ao=3 [m/s] と分かる。 ③より (Mは両辺からカットして) 3= 3-10--10-3 2 2 5√3 15 =2√3 = 0.23 有理化すると 計算しやすい (5)図より終端速度はv=4 [m/s] だから, ② を用いて

回答募集中 回答数: 0
数学 高校生

(2)を解答とは違う、垂直条件を二回使って連立方程式を作る解き方をしましたが、2枚目の右下のbの値が違います。どこで間違えたのでしょうか。 何回も見直しましたが、どこで間違えているかわかりませんでした…

• 10 外心 三角形ABCの3辺の長さをAB=4, BC=3, CA=2 とする.この三角形の外心を0とおく. (1) ベクトル CA と CB の内積 CA・CB を求めよ. (2) CO=aCA + 6CB をみたす実数 α, b を求めよ. 外心の求め方 外心の定義 (OA=OB=OC) を用いて求めてみよう. 例題では|OA|=|OB2=|OC|2 を CA, CB, a, b で表して a, b を求め ればよいのであるが,素直にOA=CA-CO=(1-4) CA-6CBとして 計算すると式が膨れてしまう. (信州大・理一後) |OA|=|CA-CO|=|CA|2-2CA・CO4 | CO 2 としておくことがポ イントで,これがCO2に等しいことから2CA・CO-|CA | となる。 これに CO=aCA+bCB を代入する(aとbの関係式が得られる)。 0 B 同様に|OB|=|OCからもαとの関係式が得られ,この連立方程式を解けばよい. 解答 (1)|CA-CB|=|BA|2であるから, |CA2-2CA・CB+|CB|=|BA|2 ..22-2CA・CB+32=42 CA·CB= 22+32-42 2 3 == 2 e CA ACT=0 A (2) 0から A, B, Cまでの距離が等しいので, |OA|=|OB|=|OC|2 ..|CA-CO|=|CB-CO|=|CO|2 .. |CAP-2CA・CO+|CO|=|CB|2-2CB・CO+|CO|=|CO|2 最左辺 =最右辺, 中辺=最右辺より, 2CA·CO=|CA|2, 2CB・CO=|CB|2 これらにCO=CA+6CB を代入すると, 2(a|CA2+6CA•CB)=|CA|2, 2 (aCA•CB+6|CB|2)=|CB |2 (1)で求めた値などを代入して, 3 2{a·4+6 (-2)}-4, 2{a⋅(-1)+6-9)=9 ∴.8a-3b=4 .......... ①, -3a+186=9 ②÷3よりa=66-3...... ③ で,これを①に代入すると 8(66-3)-3b=4 28 .. 45b=28 .. b = 45 28 11 これを③に代入して, α=6· -3= 45 15 COR=0 C. (c) 問題文の CA, CB を見て,Cを 始点に書き直す。 =0 CA (CA - PCA + CD) - CAP) CA +&CB=0 この式は次のようにして導くこ ともできる. 2 A 0 CACO=CA・CO・cos/Cである. 0 から CAに下ろした垂線の足を Hとすると,HはCAの中点で Cocos ∠C=CH=CA/2 よって, CA·CO=CA·CH=CA2/2 CB・COも同様. 10 演習題(解答は p.27 ) △ABC において AB = 1, AC=2と1 /BAC=

回答募集中 回答数: 0
現代文 高校生

問10 ④ 問11 ③,⑤ 問12 ①,④ について解説お願いします!🙏💦 答えは上から、1,4,3です。

的に成立 (2023AG-F-10) ほない。 解釈されて れるもので ~⑤のう 一国 11- わかりやすい。 第二問 次の文章を読み、設問 問1~問12)に答えよ。 理系の学問については、高度な計算や化学実験やプログラミングができるようになって新しいものを設計することが可能に なったり、機械や人体の構造やメカニズムについて正確に理解することで問題が起こった場合の対処ができるようになったりす るなど、その学問を修めることでどのような能力が得られて、そこからどのような価値を生み出せるようになるかは、 A それに比べると、人文学を修めた人が得られる能力とそれによって生み出される価値とは、曖昧にしか論じられないものである。 また、理系の学問によって得られる能力が 一的なものであることが多い一方で、文系の学問によって得られる能力 は「批判的思考」であったり「想像力」であったりと、存在を証明することが難しいものである点も厄介だ。 ある人がどのよう な技術を身につけているかについては、その技術に対応する課題に取り組んでそれを解決することで客観的に証明することがで きるが、想像力や批判的思考についてはそういうわけにはいかない。 さらには、高度な技術はどこかでそれを学ばなければ習得することが不可能である一方で、批判的思考や想像力は、それ自体 は大半の人にもとから備わっているものである。 人文学を学ぶことはこれらの能力を深めさせてはくれるが、人文学を学ばなく 優れた批判的思考や想像力を発揮できる人はいるだろうし、その逆の場合もあるだろう。 人文学は、せいぜいが「涵養」と いう程度のはたらきしかできないかもしれない。 それでは、人文学は社会に対してどのような貢献をしており、どのように役に立っているのか? 幾人かの論者が指摘しているのは、「民主主義が健全に機能するためには、一定数以上の市民が人文学に触れて、批判的思考 や想像力を適切に培わなければならない」ということである。 (注1)みたになおずみ たとえば、日本の哲学者である三谷尚澄は、著書 『哲学しててもいいですか? 文系学部不要論へのささやかな反論」のなか で、哲学を学ぶことの意義は批判的思考とともに「箱の外に出て思考する力」を養うことである、と論じている。 かんよう (2023AG-F-12) 一国 13-

解決済み 回答数: 1
数学 高校生

演習15で、両辺に√nをかけた不等式について、n=kの時に両辺に√(k+1)を加えて証明しようと思いました。(今まで解いていた問題だとこのような解き方でしたので…) そうしたら3枚目の最後の式から0以上であることを言えないために、証明できませんでした。 みなさんはどの時点... 続きを読む

3 となるので,①は成り立つ。 1 1 +... + <2- 12 22 ne n 1 n=2のとき, 1 + 5 12 4 22 , 1 = 2- 2 2 n=k(k≧2) のとき, ①が成り立つとすると, 1 1 1 ・+・・・+ <2- 12 22 k2 k ①でn=k+1とした式 1/3+/12/2++//+(k+1)= 1 1 1 <2 3 k+1 を②から導けばよい. ここで,②③の左辺どうし,右辺どうしの差を不等号で結ぶと, (k+1)2 < (2-1+1)-(2-1) 4 ④が成り立つことが示せれば, ② + ④ から ③ を導くことができる.そこで, ④ を示すことを目標にする. そのためには, (④の右辺) (④の左辺) > 0 を示せ ばよい. = (2)-(2)-(1) (k+1)2-k(k+1)-k k(k+1)2 1 1 1 1 k k+1 (k+1)2 1 >O k(k+1)2 よって、 ①は数学的帰納法によって証明された. 注②の両辺に 1 (k+1)2 を加えると, 1 1 1 12 + +…+ + 22 k2 1 (k+1)2 1 <2- + k (k+1)2 1 1 これから 2 + <2- k (←④) を示せばよいとしても (k+1)2 k+1 よい。 15 演習題 ( 解答は p.78) ← ③の左辺は、②の左辺に 1 (k+1)2 を足したものなので ②と③の差に着目する. <a<bかつc <d ⇒ atc<b+d という不等式の性質を用いている。 1+√2+√3+√m 数列 {a} を am= で定める.このとき, すべての自然数nに n 2n 3 ついて、不等式 2/ <a が成り立つことを,数学的帰納法によって証明せよ。 帰納法の使いやすい形に (信州大・医一後) して証明する. 70

解決済み 回答数: 1