学年

教科

質問の種類

物理 高校生

(3)で運動方程式に重力が入っていないのであれっ?となったのですが…入ってなくて大丈夫なのですか?

82 亀場中の荷電粒 次の文の に適当な式を記入せよ。 真空の空間に。 図に示すように間隔d, 長さ1の平行板電極を置く。 電極と平行 に軸、垂直に軸をとり, 原点Oは図 のように電極の左端とする。 電極の中心 からしだけ離れてx軸に垂直に蛍光面を 置く。 下の電極を接地し,上の電極に正 電子 V mc -e YA 電極 TA + + + + + d ・L・ 5 蛍光面 V の電圧Vを加え,質量m,電荷 -e である電子をx軸上で正の方向に速さ が電場から受ける力はy軸の正の向きで大きさ (2) となり, 電子の加速 でうちこむ。電極間の電場はy軸の負の向きで強さは (1) である。電子 (3) となる。 電極間ではこの加速度は一定である。 電子が電極間を 度は 通過する時間は 1/3となるから、電極間を通過する間のy軸方向の変位は (4) となる。 電極間を出た後,電子は電極間を出るときの速度の成分 たがって電極の間にうちこまれてから蛍光面に達するまでのy 軸方向の変位 と成分からなる等速直線運動をし,変位 y2 だけ上方で蛍光面に至る。し となり, m, e, V, d, l, L およびぃの関数で与えら はy=y+y2=(5) れる。 また,紙面に垂直に適当な大きさの磁場をかけると電子は等速直線運動を して, 蛍光面上の y=0 の点に達するようになる。 このとき、電子が電場か ら受ける力と磁場から受ける力のつりあいより, 磁束密度の強さは (6) (法政大) (7) に向かう向きである。 であり,その向きは紙面に垂直で

回答募集中 回答数: 0
数学 高校生

147.2 この問題を記述して解く場合でも 文章などはこれを書けば大丈夫ですか??

n(a+B), p.227 1. を利用して os a cos B と Bが属する e+cos?a=1 ■+cos2 = 1 216 65 2_33 = sin(al 決め Sil を計算して +costal ! an(a 基本例題 147 2直線のなす角 85 (1) 2直線√3x-2y+2=0, 3√3x+y-1=0 のなす鋭角 0 を求めよ。 (2) 直線y=2x-14の角をなす直線の傾きを求めよ。 指針▷ 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tano (0≤0<r, 0+. 0+ 17/2) 1 (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線 のなす鋭角0 は, α <βなら β-α または π-(β-α) 解答 (1) 2直線の方程式を変形すると y=- -x+1, y=-3√3x+1 √3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-α tan a= 2 tan0=tan(β-α)= tanβ=-3√3で, ラ 練習 ②147 tan B-tan a 1 + tan βtan a 0<8</であるから 0=72 3 (2) 直線y=2x-1とx軸の正の向き とのなす角をαとすると tana=2 tan(+4)= で表される。 一図から判断。 この問題では, tan a, tan / の値から具体的な角が得られないので, tan (β-α)の計算に 加法定理を利用する。 tan attan 1-(-3√3-√3)={1+(-3√3). √3)=√3 2 2 π 4 1+tan a tan y=-3√3x+1 π v3 y=- 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, YA 0 1 0 3 0 y=2x 4 B y=2x-1 x p.227 基本事項 n m = 1+ √3 2 YA n √3 DIA 0 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 2 7√3 2 0<0</ 傾きが mi, m2の2直線のな す鋭角を0とすると tan 0= [別解] 2直線は垂直でないから tan 0 /y=mx+n ÷ m-m 1+m₁m₂ --(-3√3)/5 - (-3√3) AX x 1/1/27 = √3 π から6= = 7/3 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で,直線y=2x-1を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 (1) 2直線x+3y-6=0,x-2y+2=0 のなす鋭角0を求めよ。 841- (1-2)9) (②2) 直線y=-x+1との角をなし, 点 (1,3)を通る直線の方程式を求めよ。 4章 2 加法定理 24 便

未解決 回答数: 1
数学 高校生

147.1. tanθ=√3までは解くことができたのですが、 なぜ0<θ<π/2なのですか? 2直線とx軸で三角形ができるので0<θ<πだと思いました。また、記述としてこの問題を解くときグラフがなくてもいいですか??

Y a+cos'a= B+cost = 1000-100 22 23 16 基本例題 147 2直線のなす角 (1) 2直線√3x-2y+2=0, 3√3x+y-1=0 のなす鋭角 0 を求めよ。 (2) 直線y=2x-1との角をなす直線の傾きを求めよ。 指針> 求め 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると π m=tane (0≤0<, 0+- 2 12 337 (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線 のなす鋭角は,α <βなら B-α または π- (B-α) <2個角の公式> 解答 (1) 2直線の方程式を変形すると ANGL y= -x+1,y=-3√3x+1 √3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-a √3 2 tan0=tan(β-α)= tan a= π 0= 0<0であるから 3 (2) 直線y=2x-1とx軸の正の向き とのなす角をaとすると tanα=2 tan(a+4)= で表される。 図から判断。 この問題では, tan a, tan β の値から具体的な角が得られないので, tan ( β-α)の計算に 加法定理を利用する。 練習 ②147 tan attan π 4 1+tan a tan π tanβ=3√3で, tan β-tana 1 + tan βtan a =(-3√3)={1+(-3√3)=1/3 4 2±1 (複号同順) 1+2.1 であるから 求める直線の傾きは -3√3x+1 y=√3₁ Lv3 -3, Sa o -x+1 YA 1 0 0 3 0 10 2001- y=2x x p.227 基本事項 ② y=2x-1 n YA n 0 -0 2 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 (5) /y=mx+n 傾きが mi, m2の2直線のな す鋭角を0とすると tan 0= 「別解] 2直線は垂直でないから tan 0 235 dish. (1) 2直線x+3y-6=0,x-2y+2=0のなす鋭角を求めよ。 mi-m2 1+m1m2 √3-(-3√3) 1+√3+(-3√3) 2 7 -1/3+2-√3 ÷ = π 108から x 0 = 75 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、 直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 841 1-8930) (2) 直線y=x+1との角をなし,点(1,3)を通る直線の方程式を求めよ。 4章 24 加法定理

未解決 回答数: 0