学年

教科

質問の種類

数学 高校生

この問題でなぜ逆の確認が必要なんですか?x^3の係数は正なので、x=-1で極大値、x=3で極小値をもつことは明らかだと思うのですが、、、(x=-1,3で極値をもつということは、f'(x)=0は、x=-1,3を解にもち、f(x)を微分して得られるf'(x)のx^2の係数は正な... 続きを読む

376 第6章 微分法 Check 例題 208 極値より関数の決定 (足利工業大) 3次関数f(x)=x+ax+bx+c は x=-1 で極大値をとり、x=3 で極小値-25をとる。 定数a,b,cの値と極大値を求めよ. 考え方 与えられた条件より、 増減表をかく. 解答 練習 208 *** Focus x=-1 で極大値をとる f'(-1)=0 で, x=-1 の前後でf'(x) の符号が正か ら負に変わる. x=3 で極小値-25をとる” f'(3)=0, f(3)=-25 で, x=3の前後でf'(x) の 符号が負から正に変わる. また,f'(a)=0 であっても, x=α で極値をとるとは限らない. さらに, 極値が極大値 極小値かの判定もできないので、確認が必要である. x f'(x) + CAN C -1 0 y=f(x) の増減表が右の ようになるときを考える. f(x)=x^3+ax2+bx+c f(x) 極大 より、 f'(x)=3x²+2ax+b 増減表より, f'(-1)=3-2a+b=0 3 0 + 極小 -25 7 ① f'(3) =27+6a+b=0x) (1+x)-..... ② f(3)=27+9a+36+c=-25 ....... 3③ 0-1- ①,②,③を解いて, また,このとき, f(x)=x-3x2-9x+2 斬働く a=-3, b=-9, c=2 f'(x)=3x²-6x-9=3(x+1)(x-3) より 増減表は上のようになり、x=1で極大値、x=3 で極小値-25 を確かにとる。 値は, f(-1)=-1-3+9+2=7 よって a=-3,6=-9, c=2, 極大値7 *** (xx-y=f(x) が x=α で極値をとる ⇒ f'(a)=0 18f'(a)=0 であっても, f(α) は極値とは限らない ① ② からa,bを 求め③に代入する. 求めたa,b,cの値 のときに x=-1 で 極大値、x=3で極 小値-25をとるか 確かめる. 注) 例題208 で, 「x=-1で極小値、x=3で極大値25」という条件でも、④, ② ③の 式が出てくるがそのとき, 求まる or, b,c は、この条件を満たさない。 つまり, ①, ② からは x= -1, 3 で f'(x)=0 となること, ③ からは点 (3, -25) を 通ることしかわからないので、 実際に条件を満たすかどうかの確認が必要である. 注》極値をとるときのxの値x=-1,3は,f'(x)=0 の2つの解であることから,解と 係数の関係を用いてα, b の値を求めてもよい。 例題2 関数 に、定 考え方 (1) 関数f(x)=x3+ax2+bx+cはx=1で極大値2をとり, x=3で極小値 をとる. 定数a,b,cの値を求めよ. (2) 3次関数f(x)=ax+bx+cx+d は x=1, 3 で極値をとるというま た,その極大値は2で極小値は2であるという。このとき、条件を満た す関数 f(x) をすべて求めよ。 p.3890 よ G

回答募集中 回答数: 0
数学 高校生

この問題ではなぜ逆の確認が必要なんですか?x^3の係数は正なので、x=-1で極大値をとり、x=3で極小値をとるのは明らかだと思うのですが、、、

376 第6章 微分法 Check 例題 208 極値より関数の決定 (足利工業大) 3次関数f(x)=x+ax+bx+c は x=-1 で極大値をとり、x=3 で極小値-25をとる。 定数a,b,cの値と極大値を求めよ. 考え方 与えられた条件より、 増減表をかく. 解答 練習 208 *** Focus x=-1 で極大値をとる f'(-1)=0 で, x=-1 の前後でf'(x) の符号が正か ら負に変わる. x=3 で極小値-25をとる” f'(3)=0, f(3)=-25 で, x=3の前後でf'(x) の 符号が負から正に変わる. また,f'(a)=0 であっても, x=α で極値をとるとは限らない. さらに, 極値が極大値 極小値かの判定もできないので、確認が必要である. x f'(x) + CAN C -1 0 y=f(x) の増減表が右の ようになるときを考える. f(x)=x^3+ax2+bx+c f(x) 極大 より、 f'(x)=3x²+2ax+b 増減表より, f'(-1)=3-2a+b=0 3 0 + 極小 -25 7 ① f'(3) =27+6a+b=0x) (1+x)-..... ② f(3)=27+9a+36+c=-25 ....... 3③ 0-1- ①,②,③を解いて, また,このとき, f(x)=x-3x2-9x+2 斬働く a=-3, b=-9, c=2 f'(x)=3x²-6x-9=3(x+1)(x-3) より 増減表は上のようになり、x=1で極大値、x=3 で極小値-25 を確かにとる。 値は, f(-1)=-1-3+9+2=7 よって a=-3,6=-9, c=2, 極大値7 *** (xx-y=f(x) が x=α で極値をとる ⇒ f'(a)=0 18f'(a)=0 であっても, f(α) は極値とは限らない ① ② からa,bを 求め③に代入する. 求めたa,b,cの値 のときに x=-1 で 極大値、x=3で極 小値-25をとるか 確かめる. 注) 例題208 で, 「x=-1で極小値、x=3で極大値25」という条件でも、④, ② ③の 式が出てくるがそのとき, 求まる or, b,c は、この条件を満たさない。 つまり, ①, ② からは x= -1, 3 で f'(x)=0 となること, ③ からは点 (3, -25) を 通ることしかわからないので、 実際に条件を満たすかどうかの確認が必要である. 注》極値をとるときのxの値x=-1,3は,f'(x)=0 の2つの解であることから,解と 係数の関係を用いてα, b の値を求めてもよい。 例題2 関数 に、定 考え方 (1) 関数f(x)=x3+ax2+bx+cはx=1で極大値2をとり, x=3で極小値 をとる. 定数a,b,cの値を求めよ. (2) 3次関数f(x)=ax+bx+cx+d は x=1, 3 で極値をとるというま た,その極大値は2で極小値は2であるという。このとき、条件を満た す関数 f(x) をすべて求めよ。 p.3890 よ G

回答募集中 回答数: 0
数学 高校生

新高1です。 数学Ⅲの微分法で漸近線を求める時に、X→∞に近づけたり、X→a±0に近づけたりと、①.②.③の使い分けが分かりません。誰か親切な方教えてくれませんか?😆

数学Ⅲで扱う関数のグラフは,漸近線をもつものも多い。ここで,漸近線をどのよう 漸近線の求め方 して求めればよいかについて説明しておく。 [画 曲線 y=x+1+ ここで, -x=1+ x→±∞のとき x-1 直線y=x+1 に近づいていく。 これが漸近線の1つである。 また, x1±0のとき したがって、 について →0であるから曲線は 一般に,関数y=f(x)のグラフに関して,次のことが成り立つ。 ① x軸に平行な漸近線 limf(x) =α または lim f(x) =α ⇒直線y=aは漸近線。 X-8 x- ② x軸に垂直な漸近線 lim f(x) =∞ または lim f(x) =∞ または lim f(x)=∞ xb+0 x→b+0 x→b-0′ lim f(x)=-∞ ⇒直線x=b は漸近線。 xb-0 X y →±∞ (複号同順) 直線x=1 も漸近線である。 軸に平行でも垂直でもない漸近線 lim{f(x)-(ax+b)}=0 または lim {f(x)-(ax+b)}=0 X→∞ ここで、③に関し, a, b は α=lim より求められる。 Ital [説明] 漸近線は, 曲線上の点P(x, f(x)) が原点から無限に遠ざかると き,Pからその直線に至る距離PHが限りなく小さくなる直線である。 直線y=ax+bが曲線y=f(x) の漸近線で,Pからx軸に下ろした 垂線と,この直線との交点を N (x,y) とする。 PHPNは一定であるからPH→0のとき PN=1f(x)-y|=|f(x)-(ax+b)| = |x1|1(x)-a-1 | b ⇒直線y=ax+6は漸近線。 f(x) →0であるから また, f(x)-(ax+b) →0であるから なお、上の例の曲線では,x → ±∞のとき x→±∞ 9 435\>x>0 (020) (0) →0(x→または-∞) f(x) b=lim{f(x)-ax} を計算することに 8 a → 0 すなわち f(x) -ax→b y=1+ x 1 f(x) + → a - YA または O 0 ya 1, 1 - 1 であることからも, 直線y=x+1が漸近線であることがわかる。 x(x-1) y=f(x)/ P (x, f(x)) Ⓒy=ar-i H N(x, J

回答募集中 回答数: 0