学年

教科

質問の種類

数学 高校生

数Ⅲ 基礎門40(3) 解説を読んでも理解出来ませんでした💦詳しく教えてください🙇‍♀️

68 第3章 40 逆関数 (2)とするとき。 次の問いに答えよ。 (y=f(x)の逆関数y=f(x) を求めよ.バー) ② 曲線 C:y=f(x) と曲線 Ca:y=f'(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C. の交点の座標の差が2であるとき, aの値を求めよ。 〈逆関数の求め方〉 (012) ( y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかえればよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる eto Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。 この基礎問では,IIが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より,値域は y≧-1 ここで,両辺を2乗して, 1大切!! ax-2=(y+1)2 . a x=1/2(y+1)+1/2 (y-1) 2 a *>, ƒ³¹(x) = 1½ (x+1)²±²² (x≥−1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが、xの値に対してyを決める規則が関数で すから、xの範囲,すなわち, 定義域が「すべての実数」でない限り は,そこまで含めて「関数を求める」と考えなければなりません. ey=f(x)とy=f(x)のグラフは、凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

数Ⅲ 基精 40(2) Y=f(x)とY=f^−1(x)の凹凸が異なりかつY=Xに関して対象というのはどのように判断すれば良いのでしょうか??🙇🏻‍♀️

第3章 いろいろな関数 問 68 40 逆関数 f(x)=var-2-1 (a>0x とするとき, 次の問いに答えよ、 f(x)の逆関数y=f(x) を求めよ. ② 曲線 C:y=f(x) と曲線 C2y=f(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,Cの交点の座標の差が2であるとき, αの値を求めよ。 講 <逆関数の求め方〉 y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかんよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる <逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,I 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき ポイントになります。 リーェに関して で交わる」こと fy-f(x) E よって、 2次 すなわち、エ 範囲で異な 求める。 そこで、 この2次 ( I A a>0. : a (3) (2) の B- a (別解) (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より 値域は y≧-1 ここで,両辺を2乗して, ポ 1大切!! ax-2=(y+1)2 .. X=- x = 1 (y+1)²+²² (y≥ −1) 定義域と値域は入れ かわる 演習問 a a £ɔT, ƒ¯¹(x)=±±²(x+1)²+²±²² (x≥−1) 2 a 注 「定義域を求めよ」とはかいていないので,「r≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、この範囲,すなわち, 定義域が 「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません。 (2)y=f(x)とy=f(x) のグラフは,凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

イがわかりません。 図の意味もいまいち分かってません。 どなたかすみませんがよろしくお願いします🙇‍♀️

10 難易度 SELECT SELECT 目標解答時間 15分 90 60 図のように,座標平面のx軸上に AC=CE=4 となる点 A, C, E をとる。 △ABC と ACDE はいずれも∠B=∠D=90°の直角二等辺三角形であり,この二つの三角形を合わせた図形を Kと する。また,一辺の長さが2の正方形FGHI を辺GH がx軸上にあるように左右に動かす。 すべての 図形はx軸に関して同じ側にあり、すべての図形は,周および内部を考えるものとする。 B D F ←→ I A -4- C E G2 H x 図形 K と正方形 FGHI に重なる部分があるとき, 重なる部分の図形の形状として正しくないもの は ア である。 ア の解答群 一つの直角二等辺三角形 ① 二つの直角二等辺三角形 ②一つの台形 ③一つの五角形 点 a を原点にとり,実数t を用いて点G( b, 0) とし,図形 K と正方形 FGHI が重なる部 分の面積を f(t) とすると,f(t) > 0 となるようなtの値の範囲は-5 <t < 5 である。 ただし, 1点のみが重なるときや, 重なる部分がないときは,f(t) = 0 とする。 a b に当てはまる組合せとして正しいものは イ である。 イ の解答群 ① ② ③ ④ a A A C C E b t-1 t+1 t-1 t+1 t-1 以下,このf(t) について考える。 f(0) ウ である。 ⑤ t+1 ⑤ E +

回答募集中 回答数: 0