学年

教科

質問の種類

物理 高校生

(2)の解説のSsinθ=mgtanθはどこから来たのでしょうか。また、円運動の半径がLsinθになるのも全くわかりません。どなたか助けてください。

C/ 基本例題29 円錐振り子 わかんない 基本問題 解説動画 第Ⅱ章 力学Ⅱ 図のように,長さLの糸の一端を固定し,他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を 0, 重力加速度の大きさをgとして 次の各問に答えよ。 (1) おもりが受ける糸の張力の大きさはいくらか。 00 m(Lsine) w²=mg tane w= 円 g L cose 2π L cose =2π 周期 Tは, T=- (2) 円運動の角速度と周期は,それぞれいくらか 地上で静止した観測者には, おもり |指針 は重力と糸の張力を受け,これらの合力を向心力 として,水平面内で等速円運動をするように見え ある。この場合の向心力は糸の張力の水平成分であ (1)では,鉛直方向の力のつりあいの式(2) では円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsinである。 解説 m 別解 stic (1) 糸の張力の大き さをSとすると, 鉛 直方向の力のつりあ いから, 10 L Scost S (2) おもりとともに 円運動をする観測者の にはSの水平成分 ・ と遠心力がつりあっ てみえる。 力のつり あいの式を立てると LA m (L sine) w² S +0. Ssin0=mg tan mg 0 Scoso-mg=0 Ssine mg mg S= coso (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」から, (2) の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=003 (1) Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 4

解決済み 回答数: 1
物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
物理 高校生

高校物理 電気の問題です (5)で静電エネルギーの変化を見る時合成容量から求めてはいけないのでしょうか 合成容量から求めたら答えが変わったのですが、計算ミスなのかどうかがわかりません

17-7700 E2 701 位差を求めよ。 (3)続いて, S2 を開き, S, を閉じた。 十分に時間が経過した後, S, を開きSを閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4)この後,(3)の操作をくり返すと, C2の両端の電位差はある有限な値に近づく。 その値を 求めよ。 〔17 大阪市大〕 113. 〈ダイオードを含むコンデンサー回路とつなぎかえ〉 図に示す回路において, ダイオード1および ダイオード2は理想的な半導体ダイオード (順 方向電圧が加えられたときの抵抗値は 0, 逆方 向電圧が加えられたときの抵抗値は無限大) と みなせる。 電池1および電池2の起電力はいず れも E[V],コンデンサー1およびコンデンサ 2の電気容量はそれぞれ C〔F〕 および 2C[F], 抵抗器の抵抗値は R [Ω] である。電池 コンデンサー 1 d ダイオード 1 コンデンサー 2 抵抗器 e 電池 1 木ダイオード 2 S b 電池2 の内部抵抗および導線の抵抗は無視でき, 回路から放射される電磁波はないものとする。 コンデンサー1およびコンデンサー2に電荷が蓄えられていない状態でスイッチSをa側 に入れ、十分に時間を経過させた。 このときの (1) 点c, 点d, 点eの電位 [V] をそれぞれ求めよ。 (2) コンデンサー1およびコンデンサー2に蓄えられた静電エネルギー [J] をそれぞれ求め よ。 次にスイッチSをa側から離してb側に入れ,十分に時間を経過させた。このときの, (3) コンデンサー1の点d側の極板に蓄えられた電気量と, コンデンサー2の点d側の極板 に蓄えられた電気量の和 〔C〕 を求めよ。 (4) コンデンサー1およびコンデンサー2に蓄えられた電気量 〔C〕 をそれぞれ求めよ。 5) スイッチSをb側に入れた瞬間から十分な時間が経過するまでに抵抗器で消費されたジ [ュール熱 〔J] を求めよ。 [24 芝浦工大] .B 114. 4枚の導体板によるコンデンサー回路> 応用問題 次のア~ス、ソ~チの中に入れるべき数や式を求めよ。 また,セに当てはま 文章を解答群から選べ。ただし、数式はC,V,dのうち必要なものを用いて答えよ。

回答募集中 回答数: 0
1/121