学年

教科

質問の種類

物理 高校生

(3) m+1じゃないですか?

(2) ス 光はA,Bに逆位相で達している。 すなわち, スリットSからA, B までの経路差 SA-SBが, 半波長 1/2の奇数倍となる。 SA, SB の それぞれを斜辺とする直角三角形において, 三平方の定理から (図2), SA=√/P+ (x+2) =√/1+ ( x + 1/² ) ² = 1 { 1 + 2 ( x + 1/² ) } SB=√/P+(2-x) =√/1+ (1/2 = x ) ² = 1 { 1 + 1² ( 1 / ² = ² ) } これから, SA-SB|=d 経路差 [SA-SB | が入/2の奇数倍となるので. 入 d=(2N+1)/12 y=(N+12) 12 (3) スクリーン XX' を移動させる前,点Pが次の明線となる条件は, 入 (1) の結果から, d=2mx/1/23 =mi... ① dx は変化しないので, Lが大きくなると, 条件式を満たすmは 小さくなる。したがって, XX' と AB の距離がL+ 4L になったとき, P は (m-1) 次の明線になる。この条件式は, =(m-1)入...② X L+AL 式 ① ② の辺々を割ると, d- V 424. ロイド鏡 解答 最も近い輝点: L+AL L SL m m-1 9LA Ad AL= LA 5番目の輝点: 4d' 指針ロイド鏡は,スリットSから直接届く光と,平面鏡 で反射して届く光を干渉させる実験装置である。鏡で反射す るとき,入射角と反射角は等しく, 反射光の経路の長さ(S→ DE) は, 鏡に対してSと対称な位置S'からEまでの長さ と等しくなる。すなわち, ヤングの実験と同様に考えること ができる。 ただし、鏡で反射した光の位相が逆になることを S' || 考慮する必要がある。 解説 鏡に対してSと対称な位置S' は, 鏡から距離dはなれている。 L m-1 スクリーン上の点をEとすると, 鏡で反射する光の経路の長さ (SD →E) 直接Eに届く光とS' Od, y la 112 分に小さいの一 同様の近似を用 図2はSを させたとして が、A側に移動 しても、同じ れる。 また。 しても、同じ れる。 図 2 OLが大きく て、隣りあう 4x=LA/dt り明は点 かる向きに利 D SE

解決済み 回答数: 1
物理 高校生

なぜ①+②なんですか? 代入して求めるのではだめですか

第1章 物体の運動とエス <発展例題 18 摩擦のある斜面と2物体の運動 図のように、傾きの角が30° のあらい斜面上 に質量mの物体Aを置き, これに軽い糸をつ け, 軽くてなめらかな定滑車を通して質量 2m のおもりBをつり下げたところ, A, B は動き 出した。 A が斜面を上昇するときの加速度の 大きさはいくらか。 Aと斜面との間の動摩擦 係数を 考え方 . Aにはたらく力 分ける 斜面に平行な力 重力成分 mg sin 30° 動摩擦力 F'= N 糸の張力 T 重力加速度の大きさをgとし, 斜面は固定されているものとする。 √√3 Aの運動方程式 斜面に垂直な力 重力成分 mg cos 30° 垂直抗力 N ・B: 2ma=2mg-T ① +② から, 代入 Aの力のつりあい N = mg cos 30° 3ma=2mg- 1/12 mg/1/15.1mg √3 √√3 2 3ma=mg よって,a=13239 30° mgsin30% F'= 30° -N 解答 A,B の加速度の大きさをα, 糸の張力の大きさをTと し,A,Bの運動の向きをそれぞれ正の向きとする。 運動方程式は m N A ・A:ma=T-mgsin30° 13 mg cos30°…① 斜面方向 = √√3 鉛直方向 sin 30° 130° mg =. 11/212 cos 30°=- √3 2 139 T mg cos30° 2m One Point > 物理独特の言い回し ・なめらかな(面) ⇒ 摩擦の無視できる (面) ・あらい(面) ⇒ 摩擦のある (面) 軽い(糸) ⇒ 質量の無視できる(糸) ・小球 (または小物体) ⇒大きさの無視できる球 (または物体) 補足 糸で結ばれた じ大きさの 運動する。 糸の張力の 糸のどの部 (車 左の結果 T=2m(

解決済み 回答数: 1
物理 高校生

⑴のアで温度がT1>T、T>T2はどうして分かるんですか?

(2002 岐阜大・改) ③ 下記の問いに答えよ。 数値については有効数字3桁とする。 断熱容器の中の質量 m1 〔g〕, 温度 T1 [K] の水に, 質量 m2 〔g〕, 温度 T2 [K] の水を加えてかくはんし 放置したところ、 温度が T〔K〕 となった。このとき水の比熱を4.19J/(g・K)とすると, 熱量が不変ということか ら,アという関係が成立する。 この関係は水について成立するが, 水以外の物質との間では成立しな い。 そこで,水以外の物質については,以下の式で定義される量 (換算水量と呼ぼう)を考える。 換算水量 〔g〕= 水の比熱[J/(g・K)〕 銅製容器へ たとえば,比熱 0.390J/(g・K) の銅41.9g の換算水量は3.90g である。 この換算水量の考えを用いる と, 換算水量 M 〔g〕, 温度 Ti [K] の物質と, 換算水量 M2 〔g〕, 温度 T2 [K] の物質を接触させて放置し, 平衡温度 T〔K〕に達したとすると, 熱量が保存されていれば, イという関係が成立する。 換算水量の考えを用いて固体の比熱を測定する方法がある。 図はその装置(熱量計)を示す。外部との熱の出入りを断ち切る 断熱槽の内部に水を入れた銅製容器が置かれている。 容器中 の水の温度を測るため, 水銀温度計が図のように取り付けられて いる。まず,比熱 c[J/(g・K)] の試料(質量m[g])を, 温度 73 〔K〕 に一様に加熱して, 断熱槽中の温度 T [K] の水(質量m[g])を 入れた銅製容器の中に投入する。 その後ふたを閉じ、 水をかく はんして放置した結果, 平衡温度 to 〔K〕になったとする。このと き、試料の失った熱量はウ[J] である。 この失った熱量は, 銅 製容器中の水、銅製容器, 銅製かくはん棒および水銀温度計の水没部分の得た熱量に等しい。 ここで、 銅製容器, 銅製かくはん棒, 水銀温度計の水没部分を合わせた換算水量をw〔g〕と表すと, 得た熱量の 総計はエ[J] である。 そこで, 失った熱量と得た熱量との関係から、比熱 c [J/(g・K)] は, 熱量計 オ [J/(g・K)] として求まる。 熱量計の換算水量 w〔g〕 は, 関与する物質の比熱と質量とから求められるが、 次のように実験的に求 めることもできる。 熱量計の銅製容器に質量 ms〔g〕, 温度 Ts [K] の水を入れておく。 この中に温度 T〔K〕(>Ts〔K〕), 質量m[g] の水を加えてかくはんし、全体が温度 [K]となったとする。 このとき, 加え られた水によって熱量計に与えられた熱量はカ[J] であり, 銅製容器中にはじめにある水と熱量計と が受けた熱量は、換算水量w [g] を使うとキ [J]で表せる。両者は等しいので, w=[g] として求 まる。 物質の比熱[J/(g・K)〕 -×物質の質量 〔g〕 水銀温度計 ふた 断熱槽 銅製かくはん棒 試料 具体的に鉄の試料の比熱を求めてみる。 熱量計の換算水量が計算の結果 9.00g となった場合, 164g の水を入れた熱量計(水温 15.7°C)に 98.4℃に加熱した試料(質量 41.9g)を投入し、ふたを閉じてかくは んしたところ水の温度は17.8℃に上昇した。 (1) ア~クに適当な式をあてはめよ。 (2) 鉄の比熱 cを求めよ。

解決済み 回答数: 1