学年

教科

質問の種類

物理 高校生

【高校物理、電磁気学】 河合塾出版の参考書、「高校物理」の例題4-5で分からないことがあります。 (c)(d)を解説と異なる方法で求めようとしました。(c)は答えが合いましたが、(d)は合いませんでした。私の解答を書きますので、どこが間違っているかをご指摘頂きたいです。一応... 続きを読む

第1章 電場 275 例題 4-5 電場と電位・位置エネルギー 真空中の電荷と電場に関する下記の y 文において, (a)から (d) にあ てはまる式を記せ。 ただし, クーロン P(-d,d) の法則の比例定数をk [N·m²/C2], •C(0,d) 電子の電荷を -e [C], 電子の質量 をm[kg] とし, 無限遠点での電位を 0Vとする。 0(0, 0) x B(-d, 0) A(d, 0) (1)A(d,0) と点B(-d, 0) に正の電荷 Q を固定し,y軸の点 C(0, d) 電子を置く。 D(0,- -d). 点Cで速度 0 であった電子が電場で力を受けてy軸上を動くとする と、原点0での速さは (a) | [m/s] となる。 (2) 点Aと点B の正の電荷 Q のほかに, 点Cに電気量 Q [C] の点電 荷を固定する。さらに,これら3つの点電荷を固定したままで, y 軸上 の負の方向の無限遠点に置かれた電気量 - Q [C] の点電荷をy軸に 沿って点D (0, -d)までゆっくりと動かす。 このときに外力がする 仕事は(b) [J] である。 (3)点Aと点Bに電荷 Q, 点 C と点Dに電荷 - Q を固定した状態から, 点Cの電荷 Q をC→P→B の経路で点B まで, また点Bの電荷 Q をB→O→Cの経路で点 Cまで同時にゆっくりと動かす。 このとき外 力がする仕事は (c) [J] である。 さらに,点Aの電荷 Q と点B の電荷 Q を固定したままにして, 点Cの電荷Qをy軸の正の方向に向かって無限遠点まで,また点Dの 電荷-Qをy軸の負の方向に向かって無限遠点まで同時にゆっくりと 動かす。 このとき外力がする仕事は(d) [J] である。 (東北大) 解答 (1) (a) 点A,Bの電荷による点Cおよび点0の電位は, それぞれ, Vc= kQ kQ √2kQ + √2d √2d d kQkQ_2kQ Vo d V₁ = kQ+kQ d 求める速さをひとする。 力学的エネルギー保存則より, 1/12m+(e)xVo=(-e) Vc .. mv²= (2-√2) kQe d

解決済み 回答数: 1
物理 高校生

(2) 投げた時に初速度があるのに自由落下として考えていいのはなぜですか? 壁に衝突前後で鉛直方向の速さが変化しないというのはわかるのですが、それでも投げた時に初速度があるから鉛直投げ下ろしで考えないといけないんじゃないんですか? 解説をお願いします🙇‍♀️

第1章力学 問題 24 固定面との衝突 図のように,質量m 〔kg) の小球を水平な床の鉛直 上方h 〔m〕の位置から, ([m) 離れたなめらかで鉛直な 壁に向かって、壁に垂直な水平方向に初速度v 〔m/s) で投げたところ, 小球は壁に当たってはね返り, 床に 落下した。 小球と壁との間の反発係数(はね返り係数) をeとし,重力加速度の大きさをg〔m/s2) とする。 (I) 小球を投げてから壁に当たるまでの時間はいくら か。 小球を投げてから落下点に到達するまでの時間は いくらか。 (3) 壁から落下点までの水平距離はいくらか。 物理 衝突によって鉛直方向 (壁に平行な方向) の速度成分は変化しないので 鉛 直方向では壁に当たる前と後に分ける必要はない。 求める時間をた〔s〕とす ると,距離〔m〕の自由落下と考えて、 1 h = 29t22 よって,t= 2h -[s] g [s]である。この (3) 壁に当たってから落下点に到達するまでの時間は 間 水平方向には右向きに速度 ev [m/s] の等速度運動をするので、 求める 水平距離 x[m] は, 2h x=ev(tz-t) = ev [[m] wg v (4) 小球が壁から受けた力積は, 垂直抗力によるものである。 (4) 小球が壁から受けた力積の大きさはいくらか。 Pointe <愛知工業大 〉 物体が受けた力積の求め方には,次の2つがある。 (i) (物体が受けた力) × (力を受けた時間) (解説) (I) 小球を投げてから壁に当たるまでの間, 水平方向には左向 きに速度v [m/s] の等速度運動をするので,求める時間を 物体が受けた力積 t] 〔s] とすると, 01 = vt₁ よって, =- (s) ひ (2) 壁に衝突することで, 速度がどのように変化するか を考えよう。 壁はなめらかなので, 壁と接触している 間に壁から受ける力は、垂直抗力のみである。 そのた め,壁に平行な方向の速度成分 (右図のvy) は変化せず, 壁に垂直な方向の速度成分 (右図のvx) は変化する。 反 発係数をeとすると,次のようにまとめられる。 vx なめらかな壁 Vy → 垂直抗力 evx (ii) 受けた力の方向の物体の運動量変化 この問題では、壁と接触している時間がわからないので, (i)では求められ ない。 (ii) 運動量変化で求めよう。 水平右向きを正として、水平方向の運動量 ま 変化より 内系材(小球が壁から受けた力積)= m.ev-m(-v) 運動量変化 =(1+e)mv〔N・s〕 注 反発係数eの値の範囲は0≦e≦1であり, e=1の衝突を弾性衝突(または完全 弾性衝突), 0e<1の衝突を非弾性衝突, e=0の衝突を完全非弾性衝突という。 toder Vy Point なめらかな壁に反発係数eの衝突をするとき, ・壁に平行な方向 壁に垂直な方向 52 52 速度成分は変化しない。 ・速度成分は向きが逆に,大きさが倍になる。 (1) (8) (2) 2 (s) 2h 12h (3) ev Ng [[m] ひ g (4)(1+e)mv〔N's〕 5. 力積と運動量

解決済み 回答数: 1
物理 高校生

(2) 力学的エネルギーの変化量を考えるとき、動摩擦力による仕事は考えなくていいんですか?

第1章力学 問題 18 仕事と力学的エネルギー ② ばね定数k (N/m) の軽いばねの一端に,質 量m(kg) のおもりAをつけたばね振り子が ある。このばね振り子をあらく水平な床面上 物理基礎 公式 A U = 11/√ kx² 100000000 năm Q 0 -31 P IC 5/ 置き ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のように, Aを原点Oから点P(x=5/〔m))まで引っ張って、静か にはなした。Aは左向きに運動し始め、点を通過した。 その後、x=-31 (m) の点Qで静止した。 床面とAとの間の動摩擦係数をμとし、重力加速度 の大きさをg(m/s) とする。 (I)Aが点PからQまで運動する間に、動摩擦力のする仕事 W (N・m) を求 めよ。 Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E (J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 弾性力による位置エネルギー(弾性エネルギー) U (J) (k (N/m): ばね定数 〔m〕: 伸び縮み) (I) おもりAにはたらく動摩擦力の大きさはμmg 〔N〕でPからQまでの移動 距離は8/〔m〕 である。 よって, 求める仕事 W [N·m〕 は, W=-μmg818μmgl (N・m〕 (2) 求めるのは「力学的エネルギーの変化量」なので、 おもりAの運動エネル ギーと位置エネルギーの和の変化量を考える。 Aは水平方向に運動しているので, 高さが変化しておらず重力による位置 エネルギーは考えなくてよい。 また, 点P, 点Qは自然長(原点O)からずれ た位置なので,点P, 点Qにおいて, Aは弾性力による位置エネルギーをもつ。 点P,Qにおける, 弾性力による位置エネルギー Up, UQ[J] は, それぞれ, 〈千葉工業大 〉 Up = =1/21k(50)2-252k2 =/( 9 U₁ = ½k (31)²=kl² 2 (解説) ばねが自然長から伸びたり縮んだりしているとき, ばねの両端 には自然長に戻ろうとする向きに力が生じる。 この力を弾性力 点Pでは 「静かにはなし」 点Qでは 「静止した」 ので, それぞれの点で速 さは0.すなわち, 運動エネルギーKP, Ko〔J〕 も0になる。 よって という。 4E = 0 + 25 0+ -kl² 2 == 8kl² (J] 変化後KQ+ UQ 変化前 K + Up 公式 弾性力の大きさF(N) F=kx (k(N/m〕: ばね定数 〔m〕: 伸び縮み) (3) ⊿E = Wより ※ 弾性力の向きは, 自然長に戻ろうとする向き。 - 8kl² == -8umgl よって, μ = kl mg F ⇒縮みx, 弾性力F,=kx, 弾性エネルギー U22kx2 自然長⇒弾性力0, 弾性エネルギー 0 X1 X2 mmmm 000000 F2 ⇒ 伸びzy→弾性力Fy=kx, 弾性エネルギー U2=1/2k2 自然長 注 ここで, p.39 公式 力学的エネルギーと仕事の関係と p.37 公式 運動エネル ギーと仕事の関係の違いを、しっかりとおさえておこう。 保存力である重力 弾性力について, 位置エネルギーを考えるのが 「力学的エ ネルギーと仕事の関係」 であり, 仕事を考えるのが 「運動エネルギーと仕事の関 「係」である。 1つの式の中で、重力 弾性力の位置エネルギーと仕事を同時に考え こることはない! た, ばねは伸びたり縮んだりしているとき, 弾性エネルギーを蓄えている。 エネルギーは弾性力による位置エネルギーともいう。 kl (1) W = -8μmgl〔N・m〕 (2)4E = - 8kl[J] (3)μ= mg 4. 仕事とエネルギー 41

解決済み 回答数: 1
物理 高校生

❹(1)(2)を教えてください。

15m/s 解答 (1) x2 (2) x=3 15m/s 指針 /s の一定の速さで走る自動 問いに答えよ。 15m/s 15m/s させてん は何km/hか。 車の進む距離は何mか。 を含む項を 運動の表し方 線道路をバスが東向きに速さ いる。 東向きを正の向きと 答えよ。 20m/s 4東 東 東 20m/s で走る自動車がある。 る人から見た自動車の相対速 15m/sで走る自動車がある。 る人から見た自動車の相対速 m/sの速度で走っていた自動 かけたところ, 一定の加速度 後に速度が東向きに 10m/s (3) 14 質量 0.10kgの 小球を高さ 29.4mのビルの 上から鉛直下向き に 4.9m/sの速さ 29.4m 4.9m/s 投げ下ろした。 次の問いに答えよ。 ただし, 重力加速度の大 きさを9.8m/s2 とする。 (1) 小球が,地面まで落下するのにかかる時間 は何か。 (2) 地面に落下したときの小球の速さは何m/s か。 □⑤ 質量 0.10kgの小球 を地面から鉛直上向き に 9.8m/sの速さで投 げ上げた。 次の問いに 答えよ。 ただし,重力 加速度の大きさを 9.8m/s2 とする。 9.8m/s (1) 最高点に達するまでにかかる時間は何sか。 (2) 最高点の高さは何mか。 (3) 小球を投げ上げてから地面に落下するのに かかる時間は何sか。 □⑥ 次の空欄に適切な語句を記せ。 最高点 20.10kg 水平投射運動は,物体を水平に投げ出した ときの運動である。 この物体は, 水平方向に は ( ① ) 運動, 鉛直方向には ( ② ) 運 を読み取り、 数に注目して, 1章

解決済み 回答数: 1