学年

教科

質問の種類

物理 高校生

(2)で力の向きがどっちにはたらくか分かりません

Far, most sold product . Those bran new col colors but have jons, Those should helj of use fo r all of yd icty of sizes of them normal usage as Jap, er, also it can be use papers, writing ds and as a lot of l コ enjoy the yar = have to コce is not an of co Feath 物理重要問題集 62 paj 42 7単振動·単振り子 58.地球のトンネル〉 球を干住R imj の球体とみなし、その中心を通る直線 状のトンネルを考える。図は中心0を含む地球の断面を示し ており, A とBはそれぞれ地表面上の出入り口とする。0を 原点とし,BからAへ向かう向きを×軸の正方向とする。ト ンネルの占める体積は地球全体の体積に比べて無視できるは ど十分小さく,トンネルの内部において, 質量 m [kg] の小 物体はトンネルの壁面と接触せずに運動するものとする。また, 地球の密度は一様であり、 地球の大気および地球の自転, 公転, 他の天体の及ぼす影響は考えないものとする。地表面 における重力加速度の大きさをg [m/s°] として, 次の問いに答えよ。 (1) 地球の質量を M [kg), 万有引力定数をG[N·m?/kg°] としたとき, gをM, G, R を用い て表せ。 (2) 小物体がx軸上の位置x [m] にあるとき, 小物体にはたらく力F[N] を, x<-R, -RS×SR, R<xの3つの場合に分けて, g, m, R, xを用いて表せ。 ただし, 小物体 にはたらく力は, 0を中心とする半径|x|の球内部の質量がすべてOに集まったと考え, その全質量が小物体に及ぼす万有引力に等しいものとする。 (3) (2)で求めた力Fをxの関数として, グラフにかけ。 Aで小物体を静かにはなしたところ, 小物体はOを中心に, 振幅尺の単振動を始めた。 (4) 小物体が0を通過するときの速さ[m/s] を, g, m, Rのうち必要なものを用いて表せ。 (5) 小物体がAを出発してから, 初めてBに到達するまでに要する時間を [s] を, g, m, Rの うち必要なものを用いて表せ。また, 重力加速度の大きさを 1.0×10m/s°, 小物体の質量 を1.0kg, 地球の半径を 6.4×10°m としたとき, 時間tを有効数字2桁で求めよ。 次に,小物体を0からある初速でx軸の正の向きに打ち出したところ, 小物体はOにもど らず無限の遠方まで飛んでいった。 (6) 小物体がOにもどらず無限の遠方まで飛んでいくために必要な最小の初速 vo [m/s] を, 9, m, Rのうち必要なものを用いて表せ。 R 59 で が は 箱 (18 愛知教育大)

回答募集中 回答数: 0
物理 高校生

(2)で円運動の運動方程式は使えないんですか?

y Rrad re an new colors for most sold product "Fy Phose bran new col Jors 2020 年度 物理 23 の 崎大理系 but Thos se fo 2粘士壁にも と彼との1 22 2020年度 物理 of al 「物理 sikl 崎大一理系 医学部医学科 その他 2科目 160 分) 80 分) 一定とする。 Ar の間。 Q n 次の文章を読み、以下の各問に答えよ。 a 0 糸 b P Oを中ん エ 粘土壁 (m)の1 P 体の 小球A 小球B my 図1 Mog 図2のように,まっすぐな変形しない軽い枠の端の点Bを, 動かない鉛直 な壁に,大きさと質量を無視できるちょうつがいで取りつけた。 棒は,点B 2 を中心に鉛直面内でなめらかに回転できる。 棒の端の点Aに質量 M(kg) のお 088.0 もりを軽いひもでつり下げた。 棒は, 天井の点Cからのばした軽いひもで, 890 点Dにおいて支えられている。重力加速度の大きさをg[m/s] とする。 図中 0 00P.00000 のすべての点は,同一の鉛直面内にあるとする。 このときのRを いて (5)いま, 図2において, ひもを含む直線CDE と水平線 (直線 AE) との角度 のうち,必要なものを用いて表せ。 0が 45°であった。なお, AE と BEの長さはR(m] である。 ひも CD に作 用する張力の大きさ S,[N] を, M, R, gのうち、 必要なものを用いて表せ。 を外に (3) 壁に衝突する直前の小球Bの速さ 0B [m/s] を, M, m, T, u, 00; ち,必要なものを用いて表せ。 (6) 次に, 図2においてひもを交換し, ひもの支点をCからCに移動させ 小球Bは粘土壁に衝突してAt (s)後に停止した。するまで に、球Bと壁との間にた力の大きさF(N)および を、それぞ た。同時にDをD'に移動させた。このとき, ひもを含む直線CD'Eとた

解決済み 回答数: 1
物理 高校生

一次不定方程式です! 解き方を教えてくれると嬉しいです!

次の等式を満たす整数x,yの組を1つ求めよ。 121 1次不定方程式の整数解(1) 本例題 425 OOOのの (1) 11x+19y=1 (2) 11x+19y=5 423 基本事項3 基本122 CHART OSOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 11と19 は互いに素である。。まず, 等式 11x+19y=1 のxの係数11とyの 係数19に互除法の計算を行う。その際, 11<19 であるから, 11 を割る数, 19 を割られる数として割り算の等式を作る。 a=11, b=19 とおいて, 別解のように求めてもよい。 (2) xの係数とyの係数が(1)の等式と等しいから, (1)を利用できる。 (1)の等式の両辺を5倍すると よって,(1)で求めた解をx=p, y=q とすると, x=5p, y=5q が (2) の解に 11(5x)+19(5y)=5 なる。 解答 移項すると 移項すると 移項すると 移項すると 1=3-2-1=3-(8-3-2)-1 =8-(-1)+3-3=8-(-1)+(11-8-1)-3 8=x =11-3+8-(-4)=11·3+(19-11·1).(-4) =11·7+19·(一4) (0) 19=11·1+8 11=8·1+3 8=19-11·1 3=11-8-1 2=8-3-2 別解(1) a=11, b=19 パーとする。 8=19-11-1=6-a 3=11-8-1 8=3-2+2 3=2·1+1 1=3-2-1 -aー(b-a)=2aーb |2-8-3-2 ー(b-a)-(2a-b)-2 よって =-5a+36 1=3-2-1 =(2a-b)-(-5a+36)-1 すなわち 1.7+19-(-4)=1 …0 ゆえに、求める整数x, yの組の1つは -7a-46 すなわち 11-7+19-(-4)=1) よって,求める整数x,yの 組の1つは x=7, y=-4 x=7, y=-4 (2) 0の両辺に5を掛けると 11-(7-5)+19-{(-4).5}=5 11-35+19-(-20)35 よって,求める整数x, yの組の1つは *=35, y=-20 すなわち る。このような解が最初に発見できるなら, それを答と してもよい。

回答募集中 回答数: 0
物理 高校生

黄色いマーカーの所の式変形を教えて頂きたいです🙇‍♀️

224 (225 また、電気量保存の法則より、K,と K,の電気量の和は⑤の に等しい。よって、 q=CVより, 並列接続なのでqはC に比例する。 9:9=2C:2C (2)(コンデンサーの静電 エネルギーの増加分) = (外 力がした仕事) C'=- d 2CV」 -= (2C + 2C)V。 3 V ゆえに、V= そネルギーと仕事の関係より,4U=W 電池を切り離したので,電気量は qa[C)で不変である。 6 2C 9=2C+ 2C92 に帯電した電荷の影響によ り、導体板は吸い込まれる 向きに電気力を受けるので,28 外力の向きは図の右向きと なり、外力のする仕事は負 になる。 (3) Ar は3Lに比べて 微小として、分母の Ar を 無視する。 CV 求める電気量をqa とすると、qa=2CV»= 3 1 592 (1)と U=より、 (4) 図のように正負の電荷が蓄えられ、K,の電圧が V。 K.の 電圧がなになったとすると,q=CVより,Ki, K,の電気 量はそれぞれCV. 2CV& となる。 破線部分の電気量保存の法則より. -CVe+ 2CV<= - CV, +2CV。 これに、2, 8. 9を代入して計算すると, 28 より求めてもよい。 (4) センサーA dxq8 W=4U =2×3soL 2×2€L d×q8 da? 12sL 3d 直列接続のように見えても。 電気量が等しくないときは 直列接続の合成容量の式は 成り立たない。そのときは、 電気量保存と電圧の式をた てる。 2) 2の値がx=Lからx=L+4x になったときのコンデン サーの静電エネルギーの増加分を 4U' I)とすると,(2)と 2V」 3+2C× 同様にして、エ=L+4x だから 9 AW=AU' =- - CV。+2CV。=-C×- V_ ……10 9id 2C(2C EL(3L+ 4r) 3el 2eLV Ax 2 破線部分の電気量の和が0にならないので, K,と K。の電 気量は等しくならない。よって, 直列接続の合成容量の式は 成り立たない。 電圧の式より、Vie+Vs=1V ……D (01 D 2cL'V Ar 3d(3L+ Az) 2eL'V Ax 3d ×3L +CV。-CV。 9d 外力を右向きとすると,外力の大きさをF(N)として、外力 がした仕事は一 FAx(J]となる。よって、-FAr=4wより。 +2CV。 |+2CV。 Vキ 7V 0. Dより、Ve=- -2CV。 -2CV。 2cLVAr 9d 9 -FAx キ - る3( SAte 437 2e.LV ELV 3d ゆえに,F= 9d (3) AW: 2eLVAx 0. 外力の大きさ: 2eLV。 438 センサーA, B 9d (N) 指針)導体板が入っている部分と入っていない部分の2つのコンデン (1) 60μF: 2.4×10-C. 40 μF:5.6×10'C. 20 μF:3.2×10-'C (2) -4.0V 438 P6 40 uF 20 uF サーの並列接続と考える。 指針電圧の式2個と電気量保存の式を立てる。 (1) 各コンデンサーの極板間の電圧を,右図のようにそれぞれ V(V), V(V), 1V(V)とし、蓄えられる電荷の符号が右図の ようになっていると仮定する。破線で囲まれた部分の電気量 保存の法則より. q=CVを用いて, + 40×10-V%-60×10-V-20×10*V%=0 ゆえに,3%-2V:+1½=0 …O また、閉じた回路についての電圧の関係式をたてると、 V+ V= 18 ……② 0~3より、V=4.0[V). G=14(V). %=16(V) 以上より、 60 μF:g=60×10-*×4.0=2.4×10~(C) 40 uF:92= 40×10-*×14=5.6×10~[C) 20 uF:9= 20×10-*×16=3.2×10~[C) =4.0[V)より,点Nの電位を基準とすると、点Mの電 位は、-4.0V (1) 最初,導体板を挿入しなかったときの電気容量を C.[F]. V) 解説 437(1) センサーB, G 解説 電気量を qo(C) とすると, C=e e- q=CV より, P V(VF 60 uF のセンサーH C=S×2L×L_ 2c.L?, d 金属板や誘電体板を入 d 12V れた場合 18V 2eL'V。 →いくつかのコンデン サーの並列,または直 列接続と考える。 0~3より、 37-2(18-7) d コンデンサーの, 導体板が入っていない部分の電気容量を G[F), 導体板が入っている部分の電気容量を C.[F]とする と,C=e-より, C は面積がL(2L-x) [m°'], 極板間隔が -V+%=12 …3 +(12+ V) = 0 ゆえに、V=4.0[V) のより、 =18-V=14(V) のより、 V=12+K=16(V) 2個のコンデンサーの並列 接続と考える。 d Cm]だから。 - J, (2L-x)(F) C= d C」 導体板内には電界ができないので, C:は極板問隔は残りの 部分の(m)になる。面積が Lr[m']だから。 |2eLI (F) d 21 _ EalI - CG=S d 2 d あるから 出 GとCは電圧が同じなので, 並列接続の合成容量の式が成 り立つ。よって, 求める全体の電気容量C[F]は, EaL(2L -ェ),2ela _ eL (2L+x)_rp) 中 C=C+C= d d d 65 イ

回答募集中 回答数: 0