学年

教科

質問の種類

物理 高校生

解説のABの電荷から出ている矢印がなぜこの向きなるのか分かりません

点 【解説】 第1問 小問集合 ばねaとばねbのばね定数をそれぞれka, k とする。 a と 今はともに自然長からしだけ伸びているので、おもりAとBの それぞれの力のつり合い式は以下のようになる。 kad=mg, k₁d=2mg AとBの単振動の周期をTA, TB とすると, ばね振り子の周期 これらより, a に対するbのばね定数の比は、2となる。 2m ka 【ポイント】 公式より、T=2= 2 である。以上より, ばね振り子の周期 m TB 2ka T: 周期 問2 帯電体Aは正電荷, 帯電体Bは負電荷なので,いずれも点 の答③ ばね定数の 質量 0につくる電場の向きはAからBの向きである。AとBの電気 量の大きさ Qが等しく,AOとBOの距離もRで等しい。 がって,AとBがそれぞれ点0につくる電場の強さ EA, EBは 等しく,点電荷による電場の公式より,E=EQとなる。 点電荷による電場を 以上より, AとBが点0につくる電場は, それぞれの電場を合 成して,A から B の向きへ強さ 2kQとなる。 R2 R2 また, 一様な電場からAには左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 ジ E=kQ 電気量 Qの点電荷から距離離れて いる点の電場の強さ 22 : クーロンの法則の比例定数 電場の向きは Q0 のとき電荷から 遠ざかる向き, Q <0 のとき電荷に近づ く向き。 一様な電場から +Q 受ける静電気力+Q A リング A 回転をはじめる方向 R EA EB B 一様な電場 B -Q 一様な電場から 受ける静電気力 2 の答 ① 3の答③ 変化を圧力と体積の関係を表すグラ A.Bの向き(?)

解決済み 回答数: 1
物理 高校生

(3)の問(b)で計算してもl=√5^2-0.05^2になってしまって答えが合わないです...。どこの計算が間違っているのか教えて頂きたいです。

【2】 図のように,zy 平面内のx軸上において原点をはさんで0.10m の間 隔をおいた2点 Q1 Q2にそれぞれ q〔C] の正電荷が固定されている。 空 間は真空で, クーロンの法則の比例定数を [N·m²/C^) として,つぎの問い に答えよ。 (1) 原点における電位 V[V] を求めよ。 ⑥ KG-k】 E = Ka KF 2 (2)[C]の正電荷を原点から十分遠い (無限遠としてよい) 2軸上のA 点から0点まで移動させるとき、 外力がする仕事 W[J] はいくらか。 (3) A点におかれた質量 m〔kg),正電荷 Q[C]の第三の粒子に、0点に向け初 速度を与えたとする。 =2K+ (b)もし粒子の初速度が(a)で求めた値の半分であったとすると,粒子は (a) 粒子が0点に到達するための最小の初速度を求めよ。 2k B -0.05m0.05m Q: I Q2 Vo-2 q 点にどこまで接近することができるか。 0点から近接点 B までの距離[m]を求めよ。 (c) (b)でB点に達した粒子のその後の運動を, 句読点を含めて30字以内で説明せよ。 (4)質量 m(kg), 正電荷 g[C]の粒子を原点0からQ2の方向にx[m] 離れた点Cにおく。 (a)点Cの粒子に働く力F[N] はにほぼ比例することを示せ。 ただし, xは0.05m にくらべて十分小さ いとする。 また, Fの向きも示せ。 (b)この粒子が点Cを離れて動きはじめた。 どのような運動をするか。 句読点を含めて30字以内で答えよ。

回答募集中 回答数: 0
物理 高校生

丸印が着いているところの解き方を教えてください

針 題 1 等加速度直線運動の式 正の向きに 10.0m/sの速さで進んでいた自動車が,一定の加速度で 速さを増し、 3.0 秒後に正の向きに 16.0m/sの速さになった。 (1)このときの加速度はどの向きに何m/s2 か。 (2) 自動車が加速している間に進んだ距離は何mか。 (3)こののち自動車がブレーキをかけて,一定の加速度で減速し, 40m進んで停止した。 このときの加速度はどの向きに何m/s2 か。 初速度の向きを正とおいて、速度や加速度の符号に注意して式に代入する。 (1) 加速度をα[m/s2] とする。 「v=vo + at」 (p.22 (8) 式) より 16.0 = 10.0 + α x 3.0 ② これをαについて解くと a = 2.0m/s2 >0 (正の向き) であるから, 加速度は正の向きに 2.0m/s2 1 (2)進んだ距離を x[m] とする。 「x=vot+1af」 (p.22(9) 式)より x = 10.0×3.0 + × 2.0 × 3.02 よって x = 39m 2 (3) 加速度をα'[m/s2] とする。 「v2vo=2ax」 (p.22 (10)式)より 02 - 16.0° = 2a′ × 409 これをαについて解くと α = -3.2m/s2 a' < 0 (負の向き) であるから, 加速度は負の向きに 3.2m/s² 正の向きに 8.0m/sの速さで進んでいた自動車が,一定の加速度で速 さを増し, 4.0秒後に正の向きに 14.0m/sの速さになった。 (1)このときの加速度はどの向きに何m/s' か。 (2)自動車が加速している間に進んだ距離は何mか ③ こののち自動車がブレーキをかけて,一定の加速度で減速し、 35m進んで停止した。このときの加速度はどの向きに何m/s2 か。

未解決 回答数: 1