学年

教科

質問の種類

物理 高校生

物理の問題の(2)についてわからないところがあります。 Asin(2πft+π)にはマイナスがなく、どうして、-Asin2πftにはマイナスがあるのですか。

218. 単振動の式 原点Oを中心として,x軸上で単振動をする物体があ る。 この単振動の振幅は A[m〕 振動数はf [Hz] である。 物体が, 原点O を負の向きに通過する時刻を t=0 とする。この単振動について,次の各 問に答えよ。 Ons st (1) 角振動数を求めよ。 (2) 時刻 (0) における変位 x [m] を表す式を示せ。 (3) 速さの最大値を求めよ。 (4) 加速度の大きさの最大値を求めよ。 例題 30 ヒント (2) 物体は, t=0 において原点を負の向きに通過するため、 初期位相は"となる。 PRAUDONES (1) 218. 単振動の式 解答 (1) 2f [rad/s] (2) x=Asin (2ft+m) [m] (x=-Asin2πft [m]) (3) 2πfA [m/s] (4) 47²f2A (m/s²) 指針 単振動における変位の式は,初期位相が0のとき, 角振動数を w とすると, x=Asin (wt+0) と表される。 また, 振幅をAとすると, 速さの最大値は v = Aω, 加速度の最大値は α = A ω² となる。 2π W= -=2πf [rad/s〕 T 2π 解説 (1) 角振動数ω [rad/s] は、 周期T 〔s] を用いて, w= と表 T される。 T= の関係を用いると, f (2) 原点を負の向きに通過する時刻を t=0 とし ており, 初期位相はπである (図)。 求めるxの 式は, (1) のω=2πf の関係を用いて, x=Asin(wt+0)=Asin (2πft+™) [m] (またはx=-Asin2πft〔m〕) (3) 速さの最大値は, v=Aw [m/s] なので, w=2πfの関係を用いて, v=Aw=2πfA[m/s] x[m] A π -A• 初期位相π(t=0) Ax 0 (4) 加速度の大きさの最大値は, a = Aw2 から, w=2πf の関係を用い t=0 自 には は正を本過り 正の を言 本間

回答募集中 回答数: 0
物理 高校生

問2で赤線の引いてあるωの出し方を教えてほしいです

35 単振動 ② で肉 ばね定数kの軽いばねの一端に質量mの小物体を取り付け あらい水平面上に置き, ばねの他端を壁に取り付けた。 図のように軸をとり, ばねが自然の長さのときの小物 体の位置を原点とする。 ただし,重力加速度の大きさをg, 小物体と水平面の間の静 止摩擦係数をμ,動摩擦係数をμ'とする。 また, 小物体は軸方向にのみ運動するもの とする。 <2018年 本試〉 ① 問1 小物体を位置xで静かにはなしたとき, 小物体が静止したままであるような, 位 置xの最大値 CM を表す式として正しいものを、次の ① ~ ⑦ のうちから一つ選べ。 ICM= 20 μmg_ 2k μ'mg 2k ② 6 cat, μmg k [⑤ 18% 問2 次の文章中の空欄 μ'mg k 0 ・ 2μmg k 2μ'mg k ア ①~⑧のうちから一つ選べ。 A 問1のCM より右側で小物体を静かに はなすと, 小物体は動き始め、次に速度 が0となったのは時間が経過したと きであった。 この間に, 小物体にはたら 力の水平成分F は, 小物体の位置を とするとF=-k(x-ア と表さ れる。この力は, 小物体に位置 ア を中心とする単振動を生じさせる力と同 じである。 このことから, 時間は イとわかる。 m SA CH イ ] に入れる式の組合せとして正しいものを、次の DES 40 4 ⑤ ⑦ ア u'mg 2k μ'mg 2k μ'mg 2k μ'mg 2k μ'mg μ'mg k μ'mg k μ'mg k m √k m 2k k π√ m TA k 2π√ m m π T√k 2m k π T√ m k 27 √ ™ m 第1 章 力学

回答募集中 回答数: 0
物理 高校生

(3)で位相のズレとかは考えなくて良いのですか?

の角周波数 は, 2π 2×3.14 = 3.14×102rad/s T 2.0×10-2 また, XL=wLなので, (2)の結果を用いると, 2.0×10²=(3.14×102)×L L=0.636H @= 368 548. インピーダンス 解答 (1) (a) (2) (a) (3) (a) V R2+ wL= 1 [A] (b) 0A R 47²L² T² Vo (2) (b) 4²L² T² R²+ V -[A] (b) 2πL と表される。 コイルに加 T わる電圧の位相は, 抵抗よりも π/2 進 んでおり,回路のインピーダンス Za [Q] は, 図1のように示される。 した がって, Za=√R2+(wL)=R'+ 4π²L² T2 7² A2C2 [Ω] /2(R2+ 2 R² + 指針問題図(a), (b) では,いずれも直列に接続されており, 交流電 圧を加えたとき,等しい電流が流れる。 電流に対する電圧の位相は、抵 抗では等しく, コイルではπ/2進み, コンデンサーではπ/2遅れる。 解説 (1) (a) 十分に時間が経過したとき,定常電流が流れる。 こ のとき, コイルの誘導起電力は0であり, コイルは抵抗0の導線と みなせるので,電流Iは, I=1 [A] V R (b) 十分に時間が経過したとき, コンデンサーは充電を完了しており 直流電流を通さない。 したがって,電流は0Aである。 (2) (a) コイルのリアクタンスは, 1 wC 0.64 H [Ω] V₁ WLA 図 1 T2 42C2 〔A〕 (b) コンデンサーのリアクタンスは, と表される。 コ ンデンサーに加わる電圧の位相は, 抵抗よりも π/2 遅れており,回 路のインピーダンスZ [Ω] は、図2のように示される。したがって, T 2лС 1 T 2₁= √ R² + (C)² = √ R² + 17³C² (92) Zb=1 [Ω] WC 42 (3)(a)加えた電圧の実効値を Va とすると, 最大値 Vo を用いて Za R 図2 1 wC Vo Va= -〔V〕である。電流の実効値を Iaとすると, Ia=Va/Zaの √√2 関係が成り立つ。 を求めたの Lの値を計算する。 ●コイル(またはコンテ ンサー)のリアクタンス をXとすると抵抗とも 素子の電圧の位相差 /2なので, Z=√Re+X2 となる。

未解決 回答数: 0