学年

教科

質問の種類

物理 高校生

(3)について Tc/Tbの意味を教えて欲しいです。(なぜこれが出てきたのか?という過程など…) (4)について なぜA→Dに要する時間がVsの速さでA→Eに要する時間と等しいのか教えて欲しいです。 また、これよりわかりやすい解説があるならば教えていただきたいです。🙇‍♀️

図のように,一定の速さ”で一様に流れる川に浮かぶ船 の運動を考える。 船は、静止している水においては一定の 速さ us (vs>u) で進み, また、瞬時に向きを自由に変えら れる。最初, 船は船着場 A にいる。 A から流れに平行に 下流に向かって距離 L離れた地点を B, A から流れに垂直 に距離 W 離れた地点をC, C から流れに平行に下流に離れ た地点をDとする。 船の大きさは無視できるものとする。 W (1)地点AとBを直線的に往復する時間 TB を L, us, ” を用いて表せ。 L→ (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向 け、流れに垂直に船が進むようにして,地点AとCを直線的に往復する時間を W, us, v を用いて表せ。 (3)L=Wのとき,Tc を TB, us, o を用いて表せ。また,時間 Tc と TB のうち長いほ うを答えよ。 (4) 船首の向きを,ACを結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点 A から船を進めると,地点D に直線的に到着する。 その後,地点DからCに、流れに 平行に進み,地点Cに到着する。地点 A から D を経由し Cまで移動するのに要する 時間を W, US, 0, 0 を用いて表せ。 [東京都立

回答募集中 回答数: 0
物理 高校生

物理重要問題集2024 大問71番の(3)なのですが、シャルルの法則は、初期状態と状態2で一定ではないのですか。

必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 熱効率を求めよう。 図1のように大気中で鉛直に 立てられている底面積S〔m²〕 の円柱形のシリン ダーに質量 Mo〔kg〕のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho〔m〕からん 〔m〕 までである。 重力加速度の大き さを g〔m/s2] とする。 物体 M [kg] ピストン Mo〔kg]- h [m] ho[m] 初期状態 単原子分子 理想気体 状態 2 図1 初期状態は,気体の温度が外部の温度と同じ To [K], 気体の圧力』が大気圧と同じPo〔Pa〕, ピストンの高さがん。 〔m〕である。まず、ピ ストンの上に質量 M[kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し,高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し,高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり、この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 [Pa] (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 (3)状態2のシリンダー内の気体の温度を求めよ。 (4) 状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのV図を図2にかけ。 (6) このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 0 V[m³] 図2 (8)M=2Mo, Mo= PoS =2h の場合の熱効率の値を求めよ。 [12 弘前大〕

回答募集中 回答数: 0
物理 高校生

海底の勾配ってなんですか? 各川の堆積作用は何で決まってるんですか?

7 三角州の分類 Link [ちょう し 鳥趾状三角州 p.38 三角州, p.202 自然条件とかかわりの深い集落立地, p.264 ミシシッピ川の河口に広がる三角州(デルタ) えんご 円弧状三角州 海岸の波や流れに対する河川 の堆積作用の相対的な強さ [海底の勾配 カスプ状三角州 0 準平原 構造平野 堆積 沖積平野 (谷区平野、扉 ・洪積台 角海 ミシシッピ加 © TRIC ③ミシシッピ川河口 (アメリカ合衆国) 河川 の堆積作用がさかんで沿岸流が弱い場合は, 河道 に沿って形成される自然堤防が海側にまでのび 鳥の足跡のような形の鳥趾状三角州になる。 ←6鳥趾状三角州 例: ミシシッピ川 (ア メリカ合衆国),キュ ル川 (アゼルバイジャ ン), マッケンジー川 (カナダ) カイロ ©TRIC/NASA ↑ 4 ナイル川河口 (エジプト) 河道の移動がひ んぱんに生じる河川で, 土砂の堆積が進み, 複数 の自然堤防の間が埋積されて陸地化すると, 海岸 線が円弧状になった円弧状三角州になる。 ←7円弧状三角州 例: ナイル川 (エジプ ト), ニジェール川 (ナ イジェリア), ドナウ 川 (ルーマニア), イン ダス川 (パキスタン), おびつがわ 小櫃川(千葉県) Link 別冊ワーク.10 5 ⑤テヴェレ川河口 (イタリア) 波の侵食作用 が強い場合は, 堆積作用がさかんな本流の河口 近だけに三角州が突出し、 その両側は陸側に湾 して尖状になったカスプ状三角州になる。 せんじょう PICOECKE ところにある段丘ほ 土地の隆起や河川流 ←8カスプ状三角州 例:テヴェレ川(イタ リア) 安倍川(静岡 てんりゅう 県) 天竜川 (静岡県) 9 台地の 12台地の利用

回答募集中 回答数: 0
物理 高校生

1番最後の問題が分かりません。図などで分かりやすくしてもらえるとありがたいです!

必修 (BURON TE 基礎問 49 気柱の共鳴 物理基礎 図のように、円の断面をもち太さが一様な管の右からピストンを入れ、ピ ストンを移動させてこの閉管の長さを自由に変えられるようにする。 管の左側に、その開口端に向けて音波を出す音 源を置く。音源から振動数一定の音波を出し, ピストンで閉管の長さを変えると共鳴が起こり 管内に定常波ができる。この定常波の波形を表 さらに, CCC" 音源 管 ピストン すために,管の左の開口端の中心に原点Oをとり,管の中心線を軸に、こ れと垂直に軸をとる。 波形は, 空気の軸の正の向きの変位はy軸の正の 向きに,z軸の負の向きの変位は”軸の負の向きにおき換えて表す。空気中 の音速を 340 〔m/s〕 として,以下の問いに答えよ。ただし,開口端と定常波 の腹とのずれは無視するものとする。 (6)(1) I. 音源から振動数 f〔Hz] の音波を出したとき,管の長さが1〔m〕のとき 共鳴して管内に図のような波形の定常波ができた。ただし,現在より 4.00×10-3 秒前のときの空気の変位の波形は曲線 C” で,現在より、 200×10-3秒前のときの空気の変位の波形は管の中心線と一致する直線 C′で,さらに,現在の空気の変位の波形は曲線Cで表されている。なお, この間に同じ状態が現れることはなかったものとする。 (1) 音波の振動数f [Hz] を求めよ。 (2)管の長さ [m] を求めよ。 の関係式を! (3)現在の時刻で, 管内の空気が最も密になっている場所の開口端からの 距離を l 〔m〕 を用いて表せ。 Ⅱ.次に,音源から別の振動数の音波を出したとき, 閉管の長さをlo [m〕 に すると共鳴した。このときの定常波の節の数はn個であった。 その後,さ らに管の長さを少しずつ長くしていったとき,長さが [m] で次の共 7 Zo 鳴が起きた。 (4) 管の長さが 〔m〕 のとき生じたn個の節がある定常波の波長をnと lo 〔m〕 を用いて表せ。 また,音源の出した音波の波長をLo [m] のみで表せ。 JOP 管の長さが1/3 〔m] のとき生じた定常波の節の数をnを用いて表せ。 (奈良女大 )

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

大問6の問4、問5の式がどうしても わかりません。 教えていただけますか。 答えも添付します。

6 図のように,鉛直方向上向きを正としてx軸をとり、原点Oには小球Aが,位置座標 x=x には小球Bがある。 時刻 t=0に小球Aを鉛直上向きに初速度v で打ち上げると 同時に,小球Bを静かに放した。 重力加速度の大きさをgとし,以下の各問に答えなさ い。 但し, 空気抵抗は無視できるものとし、速度、加速度は鉛直方向上向きを正とする。 0-16- X Vo V-V-gt O-Vogl 20 Vo =16 x+ B Vo A 【 配点: 24点】 Vist V=Votat V=Vo-ft (1) 時刻 t = 0 から小球 A, B が衝突するまでの間において, 時刻 t における以下の問 ① ~ ④ に答えなさい。 解答は X01 Vo,g, t のうち必要なものを用いて表しなさい。 ① 小球Aの速度を求めなさい。 (2) 小球Bの速度を求めなさい。 (3) 小球 A の位置座標を求めなさい。 ④ 小球Bの位置座標を求めなさい。 Vot (2) 小球Aと小球Bが衝突する時刻を求めなさい。 Y = ±gt² lo-1xgx V² t (3) 小球 A, B が衝突する位置座標xx>0であるための, A の初速度が満たすべき 条件をxo, vo,g を用いて表しなさい。 2 2 Votentio Votyge (4) 打ち上げられた小球 A の速度が0になった瞬間に,小球Bとの衝突が起きたとする。 ① 小球 A の初速度vo を Xorg を用いて表しなさい。 ② 衝突した位置の座標をx のみを用いて表しなさい。 V=Vogt- •VOXP Vox V-Vrat V-V-st = Vo-gt t O-Votat at=vo -8- Xyz M² 0-16 at Vo² 26-10-26 2V₂-

回答募集中 回答数: 0