学年

教科

質問の種類

数学 高校生

⑵が意味わかんないです。

in (a+B), の値を求めよ、 p.241 =1 を利用して cos a cos B 角α. B 象限に注意。 sin² ar + costs sin²β+cosp= 12_16 13 65 1233 13 22 23 sin(a-8) を求め, sin(a-B) cos(a-B) 計算してもよい ing+coslo= n²+cos を求めよ 4 EX93(1 152 2直線のなす角 (1) 2直線3x-2y+2=0, 3√3x+y-1=0のなす鋭角を求めよ。 基本例 指針 ・例題 (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 解答 2直線のなす角 まず, 各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (050<n, 077 ) π (1) 2直線の方程式を変形すると √3 y= 2x+1, y=-3√3x+1 図のように、 2直線とx軸の正 2 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-a SIGN √3 2 (1) 2直線とx軸の正の向きとのなす角をα,βとすると, 2直線のなす鋭角は,α<βならβ-α または π-β-α) で表される。 ←図から判断。 この問題では, tane, tan β の値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 an 6 tanc= tan 0=tan(8-a)= tan(a+4)= 0<0</ であるから 0= (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tanq=2 tan ±tan π y=-3√3x+1 -3√3で tan β-tana 1+tan βtana =(-3/3)={(1+(3/3)・丹 π 1 tan a tan- Sa √√3 y=- 1 0 O y=2x 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, 3 B x /y=2x-1 m X p.241 基本事項 2 ys n to 0 y=mx+n | 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 1+ 傾きが mi, m2 の2直線 のなす鋭角を0とすると tan 0= x 2 別解 | 2直線は垂直でないから tan 8 m-m2 1+m1m2 √3-(-3√3) 2 -7/3+1/3-√3 ÷ 2 <<から 245 2直線のなす角は,それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで、 直線y=2x1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角を求めよ。 2 152 (2)直線y=-x+1との角をなし, 点 (1,√3) を通る直線の方程式を求めよ。 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

[1]の証明のあとに[1]からなぜ双曲線関数と呼ばれるか分かるだろう、と書いてあるのですがなぜか結局よく分からなかったので教えてほしいです!

264 参 双曲線関数 事項 p.254 の練習 149 (9) では, 関数y= ex-e-x exte-x の3つを 双曲線関数といい, グラフはそれぞれ右下のようになる。 ① sinhx= y4 2 3 coshx= tanhx= [1] の証明 ALTIN ex-e-* 2 ette* 2 ex-e-* e* te* (左辺)= - の導関数を求めた。 この関数を含めて、次 y=coshx y=e² O y=sinhx y= C 双曲線関数の逆関数 y=-e A ASIG YA 251 なお, sinh x をハイパボリック サイン, coshx をハイパボリック・コサイン, tanhx をハイパボリック・タンジェントとよぶ。 高校数学において,これらの記号を直接使う場面はないが,双曲線関数を背景とした入 試問題はよく出題されるので,その性質を知っておくと便利である。一部を紹介しよう。 sinhx D 691 [2] tanhx= coshx [1] cosh’x−sinhx=1 [3] (sinhx)'=coshx 1 cosh"x それぞれ三角関数に似た関係式であることに注目したい。 例えば, [1] は次のようにし て証明できる([2]~[5] もそれぞれ確認してみよう)。 #TERO [>x>I-# (x)\ (S) 0 [5] (tanhx)'= (12(>1- 1>x>1-) (R = (@r+ (x)\\ [4] (coshx)'=sinhx (e*+e-x)*(ex-e^*)? _ e2x+2+e-2-(e2x-2+ℓ^2)=1=(右辺)示せ。 4 4 373 08=(1) 1-54 3=88) $18-5 [1] から なぜ ①~③ が “双曲線関数” とよばれるかがわ かるだろう。 なお, 三角関数は円関数ともよばれており, COSx, sinx は単位円上の点の座標として定義されている。 一方, coshx, sinh x は, 直角双曲線上の点の座標として定大10 義されている。 また,基本例題 75では,双曲線x2-y2=1の媒介変数表 t2+1 t²-1 示x=- y= を導いたが,このte とおき換え 2t 2t るとx=cosht, y = sinht となる。 YA y=tanhx x A (cosht, sinht) 91-il (S) 1 C DESI 4TH x ✓x-y²=1 (日)広島市大 mil=(s) 20 SH p.262 の EXERCISES 119 (2) では,導関数を求める際に, 関数 y=log(x+√x2+1) か TRIJED らx= - (=sinhy) を導いた。 このことから, y=10g(x+√x2+1)とy=sinh x は 2 逆関数の関係になっていることがわかる。 22 基 ①1 高次 ① (2) 2② 方法 [1 [2 ③ y 2

回答募集中 回答数: 0
1/4