学年

教科

質問の種類

数学 高校生

数IIの軌跡と方程式の問題です 「点Qは①上の点であるから」のところ は、どこらからそれが分かるのかと 「点Pと点Qが一致するとき」となぜPとQは対称なのに 一致する場合を考えるのかが分かりません 教えてください🙏

本 例題 100 直線に関する対称移動 000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直 x-2y+8=0 上を働くとき、点Pは直線 上を動く。 6 基本 CHART & SOLUTION 対称 直線 に関して PQが対称 [1] 直線 PQ が に垂直 [2] 線分 PQ の中点が上にある 点Qが直線x-2y+8=0 上を動くときの, 直線l:x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。つまり, Q(s, t) に連動する点P (x,y) の軌跡 → s, tをx, yで表す。 答 直線 x-2y+8=0 •••••• ① 上を動く点をQ(s, t) とし, 直線 x+y=1 ...... ② ② x, y だけの関係式を導く。 [in 線対称な直線を求め ① るには EXERCISES 71 (p.137) のような方法も 4Q(s,t) あるが, 左の解答で用いた 3章 13 に関して点Qと対称な点を P(x, y)とする。 1 軌跡の考え方は、直線以外 の図形に対しても通用する。 [1] 点PとQが一致しない とき, 直線 PQ が直線 ② 01 x P(x,y) に垂直であるから 1-y.(-1)=-1 (③ 垂直傾きの積が1 s-x 線分PQの中点が直線 ② 上にあるから 「軌跡と =1 ④ 2 ③から 2 s-t=x-y 線分 PQ の中点の座標は x+sy+t ④から s+t=2-(x+y) 2 2 s, tについて解くと s=1-y, t=1-x 上の2式の辺々を加え また,点Qは直線 ①上の点であるから ると 2s=2-2y 辺々を引くと s-2t+8=0 ⑥ ⑤ ⑥に代入して (1-y)-2(1-x)+8=0 -2t=2x-2 s, tを消去する。 すなわち 2x-y+7=0 ⑦ 点PとQが一致するとき、点Pは直線 ①と②の交点 方程式①と②を連立 であるから x=-2, y=3 させて解く。 これは ⑦を満たす。 二から, 求める直線の方程式は 2x-y+7=0

回答募集中 回答数: 0
数学 高校生

数IIの軌跡と方程式の問題です 青色のマーカーの「逆に」という部分が どこから導き出せたか分かりません 2問同じところで分かりません 教えてください🙏

られた条件を付 を求める 本 例題 98 曲線上の動点に連動する点の軌跡 ののののの 点Qが円x+y=9 上を動くとき、点A(1,2)とを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 p.158 基本事項 CHART & SOLUTION る。) ものを除く 連動して動く点の軌跡 9 点Pが 。 s2+t2=9 1・1+2s x= 2+1 1+2s y= ラ 3 2+1 よって S= ラ -31-1,1-31-2 t=3y-2 つなぎの文字を消去して,x だけの関係式を導く ****** 動点Qの座標を(s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件をs, を用いた式で表し,P,Qの関係から, s, tをそれぞれx,yで表す。 これをQの条件式に 代入して, s, tを消去する。 3章 解答 Q(s, t), P(x, y) とする。 Qは円x2+y2=9 上の点であるから Pは線分AQ を 2:1 に内分する点であるから 13 YA 3 軌跡と方程式 ① (s,t) 1.2+2t 2+2t A (1,2) 13. 0 x 3 2 こんに内分 P(x,y) -3 .y) これを①に代入すると3x21)+(3v=2)=9 つなぎの文字 s, tを消 2 2 9 ゆ x- + V =9 4 3 + melli 去。 これにより,Pの条 ugetug件(x,yの方程式)が得 られる。 よって(x-/1/3)+(y-2/28)2-4 =4 ***** (2) 以上から、 求める軌跡は 中心 (1/3 2/23 半径20円 P(y)とがいて POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) =0 上の点であるからf(s, t) = 0 したがって,点Pは円 ②上にある。 逆に円 ②上の任意の点は、条件を満たす。 上の図から点Qが |円 x2+y2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない かなを満た妨方程式で導いたのだから、Pはその方程式の ・表札・図形 ほあ ② s, tをそれぞれx, yで表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。

回答募集中 回答数: 0
1/517