学年

教科

質問の種類

数学 高校生

赤い下線の変形で他の文字ではなく、y1を消しているのは、2行前のPFベクトル・nベクトルがc、x1、a2で表されているのに合わせにいくためですか?回答よろしくお願いします。

186 例題 96 焦点と接点を結ぶ直線と接線のなす角 楕円 1,2 D ★★★★ 621 上の任意の点Pにおける接線をとし 2つの焦点を F, F とするとき,接線1が2直線 PF, PF" となす角は等しいことを示せ。 目標の言い換え 2直線のなす角 → (傾き) = tan b, と tan0 = tan (01-02)=・・・(加法定理)・・・の利用 → 接線や直線 PF, PF' がx軸に垂直のときを 分けて考えなければならない。 (大変 ) ⇒ 接線の法線ベクトルをすると 法線ベクトルの利用 すべての場合を考えることができる。 PF のなす角α) = (n と PF のなす角β) F ⇒ cosa = cosβ を目指す。 C y 02 0₁ 0 x Action» 接線が直線となす角の性質は、法線が直線となす角を利用せよ α>b>0 としても一般性を失わ B a P =d2-2cx1+ CX であるから |PF| = q – Cx1 =a- 同様に, PF'= (-c-x1, -y)より a CX1 a PFn= -C-1,|PF|=α+ CX1 a PF, PF' とnのなす角をそれぞれα, β(0≦a≦ MBS) とおくと cosa= cos B Action. PF • n CX1 1 a² CX1 a- n an PFn (a PF.n |PF||| cosa=cosβ (a + cxi)\n\ CX1 a sanB≦πであるから alml a=Ba したがって, 接線が2直線 PF, PF'′ となす角は等し Point...焦点と接点を結ぶ直線と接線のなす角 - 光線が直線に当たって反射するとき,右 図1のように入射角と反射角の大きさ は等しくなる。 曲線上の点Pに当たって 反射する場合には,図2のように、点P における接線に対して入射角と反射角を 考え、直線と同様にこれらの大きさは等 しくなる。 よって ない。 焦点F'(-c, 0),F(c, 0) (c>0) y▲ P(x1,yi) とすると c² = a²-b² えればよい。 b>a (長軸がy軸上) のときも同様に証明でき ることが明らかであるか > bの場合だけ考 F また,点P(x1,y1) とすると, 接線 F -a -C 0 ca の方程式は X1X Viy + a² 62 =1 よって, lの法線ベクトルの1つは X1 n = ここで, PF = (c-x, y) より n = (a, b) 200 PFn=(c-x1 X1 09D 62 2 CX1 X1 Yı 2 a² a² 62 2 Pは楕円上の点であるから+2=1 よって PF = CX-1 · n 直線 ax + by + c = 0 の 法線ベクトルの1つは 0円 図 1 例題96で証明したことは, 右の図3において, 点Pが のどのような位置にあってもこの性質が成り立つこと 楕円の1つの焦点から発射した光線が楕円に当たって反 と、すべてもう1つの焦点に集まることが示されたこと (さらに, p.188 Play Back 12 も参照。) また ||PF|2=(c-x)2+y^ X1 =c2-2cx1+x2+621 = c2+b2-2cx1+ (1-1) x² 62 a" したがって、盗んできた 練習 96a,bはa>0,6≠0 を満たす定数とする。 の交点Pにおける放物線Cの接線をしと 男接線が2直線, PF となす角は等し

解決済み 回答数: 1
数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

次の(2)の問題で何故青線でkを-1と置くのでしょうか?どなたか解説お願いします🙇‍♂️

思考のプロセス ... 2 円 x2 + y = 4 ... ① と x + y2 + 4x - 2y+4 = 0 ・・・ ② について (1) 2円 ①,② は, 異なる2点で交わることを示せ。 (2)2円 ①,② の2つの交点を通る直線の方程式を求めよ。 (3)2円 ①,②の2つの交点と原点を通る円の方程式を求めよ。 (1)《ReAction 2円の位置関係は,中心間の距離と半径の和 差を比べよ (2),(3) 素直に考えると・・・ 例題101 ①②の交点の座標を実際に求め, それらを通る直線や円を考える。 ← 計算が繁雑 ↓見方を変える 《ReAction 2つの図形f(x,y)=0とg(x,y)=0 の交点を通る図形は, f (x,y) +kg (x, y) = 0 とおけ 2つの円のときも、同様に考える。 例題 84) ①:x2+y2-4=0, ②: x+y2+4x-2y+4=0に対して移項して右辺を0にする。 (x2+y^+4x-2y+4+h(x2+y^-4) = 0 が表す図形は, ① ② の交点を通る円または直線を表す (Play Back 9 参照)。 解 (1) ② を変形すると (x+2)+(x-1)=1 題 よって, 2円の中心間の距離 d は 01 d=(-2)+1 = √5 円 ①,② の半径をそれぞれn, P2 とすると 1円①の中心は (0,0) 円②の中心は (-2, 1) • n=2,12=1 11-22-1 =2-1=1, n+r=2+1=3 したがって, n<d<nt が成り立つから, 円 ①,②は異なる2点で交わる。 題! 84 調 (2) 2円 ①,②の交点を通る円または直線の方程式は、 ① を除いて次のように表すことができる。 (x2+y2+4x-2y+4)+k(x+y-4) = 0 (3 k=1のとき,③は直線を表すから (x2 +y +4x-2y+4) + (−1)(x + y -4) = 0 よって 2x-y+4=0 2つの円が異なる2点で 交わる条件(数学A )。 Play Back 9 参照 (x+y2-4)+k(x+y2 +4x-2y+4) = 0 とおいてもよい。 このと きは円②を除く。 k=-1/

解決済み 回答数: 1
1/21