学年

教科

質問の種類

数学 高校生

下から4行目のbm+2がなぜ、b1.b3.b5となるのかわからないです。教えてください

重要 例題 数列{an}, {0} の一般項を an=3n-1,b=2" とする。 列{an} の項でもあるものを小さい方から並べて数列{c} を作るとき, の一般項を求めよ。 学ごとに意を元金 数の項のうち、数 数列{col 10g 重要 93, 基本 99 12. 指針 > 2つの等差数列の共通な項の問題(例題93)と同じようにとおすきなうとしてと 関係を調べるが,それだけでは{cm} の一般項を求めることができない。 そこで,数列{an}, {bn} の項を書き出してみると,次のようになる。 {az}:2,5,8, 11, 14, 17, 20, 23, 26, 29,32, {0}:2,4,8,16,32, Ci=b, C2=bs,C3= bs となっていることから, 数列{6} を基準として, 6m+1が数列{c.) の項となるかどうか, bm+2 が数列{a} の項となるかどうか… 見つける。 を順に調べ, 規則性を (1-b)n-bs 104 指 解答 α=2, b1=2であるから C1=2 (14b)(1-B 数列{an} の第1項が数列{6} の第m項に等しいとするとb-b8 3l-1=2m 0-(8-bb ゆえに bm+1=2m+1=2".2=(3-1) ・2 E="b 24 =3.21-2 ① よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 - <30-1 の形にならない。 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, ...... 数列{c} は公比 2 の等比数列で, C1=2 であるから Cn=2(22)"-1=22n-1 =41 などと答えてもよ い。

回答募集中 回答数: 0
数学 高校生

1番は解決しました。2番はなぜ外すことができるのか教えてほしいです。

考える。 EU), であるこ 都産大 ] で、次の C BU (2) ACB が成り立つとき, A, B を数 が同時に成り立つことである。 線上に表すと, 右の図のようになる。 ゆえに, ACB となるための条件は k-6≦-2... ①, 3≦k ... ② k-6-2 3 kx これと②の共通範囲を求めて ①から k≤4 3≦k≦4 =xlxは物を全体集合とする。ひの部 3 ←左の図 をかいて 8-14 +7. -+5) ST. ANB B(2.5)であるから a+1-5 =2のとき SEA ゆえに a+7=9, a²-4 よって A=12.4.5), B={4, g このとき、AN(25) となり a+7=5, a 練習 1から1000までの整数全体の集合を全体集合とし,その部分集合A, B, C-2 のとき ③47 A={nnは奇数, n∈U}, B={n|n は3の倍数でない, nEU}, C={n|n は 18 の倍数でない, nEU} とする。このとき, AUBCCであることを示せ。 A={n|n は偶数,nEU}, B={n|nは3の倍数,n∈U} 偶数かつ3の倍数である数は6の倍数であるから AnB={nnは6の倍数, n∈U} また,C={n|n は 18 の倍数, n∈U}であり,18の倍数は6の CCANB & J 倍数であるから よって A={2, 4.5), B=(4. このとき、ANB ={2}となり、 上から a=2 [←BC30以下の自然数全体を全体集合 「〜でない られて このこともA={2, 4, 6, 8, 10, 12, の集合をB5の倍数全体の集合 (1) ANBOc (2 ることの着 30}. B={3,6,9,12,15,18, 21, 24, 27, 30), .0)- CCAUB ド・モルガンの法則により, An=AUBであるから 0 よって ② CAUB すなわち AUBCC 検討 ド・モルガンの法則 AUB=A∩B, ANB=AUB が 成り立つことは,図を用いて確認できる。 ←QCPによって C=(5, 10, 15, 20, 25, A∩B∩C={30} BUC 。 (a) U .0) まず, AUB=ANBについて, AUB は図(a) の斜線部分, AnBは図(b)の二重の斜線部分である。 の ={3,5,6,9,10,12, よって AN(BUC)= A∩B={6,12,18,2 (AUB) NC= (b) U O が AUB B (b) 部分が 重なり合った 次のことを証明せ ANB SO (1) A={3n-1/r 図 (a) の斜線部分と図(b) の二重の斜線部分が一致するから ALIZ (2) A={2n-1| xEB とすると, x=6

回答募集中 回答数: 0
1/9