学年

教科

質問の種類

数学 高校生

画像3枚目のように比をつかって解いたのですが、 PR/AB=10/21になってしまいました。 この考え方は間違っていますか?教えてください。

分散、標準偏差 入ります。 ア, イ, m」 と標準偏差のは 450 イウ,...で示 1.1/2(1-2)=125=5 大きいから、 Z5 従う。 また, X=60 のとき X-50とすると、 は近似的に標準正規分 V(X),標準偏差 (X)は E(X)=np V(X)=np (1-p 確率変数Xが二項分布 B(n, 従うとき,Xの期待値 E(X) OP= 20A+OB 1+2 OA+OB 内分点の位置ベクトル 次に,点は線分AQ の中点であるから, AQ2AH であり 線分ABをmin に内分する点を Pとすると OQ = OA + AQ =OA+2AH OP= "OA+mOB m+n ... ① 60-50-2 5 B 50,212) に従う。よって、どの期待値mと標準偏差のは X-np √np (1-p) 正しいとすると、1回の試合でAが勝つ確率は であるから, Y 従うとき,Z= 確率変数Xが二項分布 B(n, (X)=√mp(1-p) 二項分布の正規分布による近 点は直線 OP 上の点であるから, kを実数として 0 OH = k OP とすると が大きいとき, 確率変数は と表される。このとき AH-OH-OA - kOP - OA = k(²/OA+/+OB)-OA B mPn 点Pが直線AB上にある H B ⇔AP = AB 的に標準正規分布 N(0, 1)に従う = (k-1)OA+KOB --2 を満たす実数k が存在する。 ベクトルの差 50.12=25 ここで,点Qは直線OP に関して, 点Aと対称な点であるから, OPAQ であり AB = OB-OA OPAH (③) Y-25 50は大きいから, Z2= 5 とすると, Zは近似的に標準正規分 √2 したがって 0, 1)に従う。 また, Y=30 のとき 30-25 Z₂ = 2=12 5 =1.4142≒1,414 .. ② OP.AH=0 (OA+/OB){(1/2-10A+/kOB}=0 (20A+OB)・{(2k-3)OA+kOB}=0 (4k-6) OA 2+(4k-3) OA・OB+k OB=0 (4k-6)×12+(4k-3)x1+k(2)=0 8k-15 - =0 P(-1.96 ZS 1.96) = 0.95 解法の糸口 り,有意水準 5% の棄却域は Z≦-1.96 または 1.6 Z ..③ ここで 2009年から2018年の全100 試合の中で実際にAが勝ったのは 24+3660 (試合) 正規分布表を用いて棄却域を 求め, (1) (2)それぞれ求めた Z1,Z の値が棄却域に入るか どうかを調べる。 15 k = 16 これを②に代入して AH=438×168-10A+1/3×1/8OB ①の値は③に入るから, 仮説Hは棄却される。 また, 2019年から2023年の全50試合の中で実際にAが勝ったのは30試 ②の値は③に入らないから, 仮説Hは棄却されない。 以上により, 有意水準 5% の検定において, (1) では仮説Hは棄却されて (2) では仮説Hは棄却されない (①)。よって,(1)ではAとBの間に力の差があ ると判断でき, 2)ではAとBの間に力の差があるとは判断できない (①) 標本から得られた確率変数の値が 棄却域に入れば仮説を棄却し、 棄 域に入らなければ仮説を棄却しない 数学Ⅱ 数学 B 数学C 第6問| ベクトル 解法 内積の定義により OA・OB = |OA||OB|cos ∠AOB 1 =1x√2 x 1 2√2 2 また、点Pは辺AB を 1:2に内分する点で あるから 0 A 'B ベクトルの内積 探究 ①でない2つのベクトル なす角を90° の 180° とする と ab=a||6|cose =-3-OA+16 OB さらに, ① に代入して OQ=OA+2(-20A+16OB) =OA+OB 次に,点Rは直線OQ 上の点であるから, 実数として OR = 1OQ と表される。このとき OR = (OA+OB) -1108 +108 ベクトルの垂直条件 ①でない2つのベクトルに ついて abab=0 ・B R 学8年 解法の糸口 OQ をもとに OR をOA と OB を用いて表すことを考える さらに、 PR を AB を用いて す。

回答募集中 回答数: 0
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
1/314