学年

教科

質問の種類

数学 高校生

ここって7じゃないんですか?! この1.3.5・・・の数字の意味教えて欲しいです!

立つ。 並んでいる。 の 3 5 分量を21 (k=1, 2, 3, ...), 分子を正の奇数とする分数が下のように1列に並んでいる。 分母が2の分数はそれぞれ 4' 4'4' 4'8'8'8' 13 15 8'8'8'8' 3 1 7 1 3 5 7 1' 2' 2' 9 11 8' この数列の第100項は アイ ウエ である。 また、 よって、 この数列の初項から 31 1024 までの和T を求めると, T= この数列に現れる分数で分母が2k-1 である2k-1 個の分数の総和 Skをkの式で表すと, S=ケ 31 1024 [サシスセ はこの数列の第 オカキク 項である。やす ソー である。 である。 答 ... 2m-1 第k群の番目の分数は A 分母が同じ項を1つのグループと考えて,前から順に第1群, 第2群, ・と呼ぶことにする。 このとき,第ん群には2個の分数が含まれ、 2-1 である。 つい する =0 項は,第7群の37番目の項である。 よって、 第100項は (1)100 (1+ 2 + 4 + 8 + 16 +32) +37 であるから,この数列の第 100 237-1 27-1 73 じ 64 01 第群の分子1,3, 5, 7, 9, ··· は、初項1, 公差の等差数列 であるから, 番目の分数の分 子 1+(m-1)-2=2m-1 る。 また, して 31 1024 がこの数列の第群の番目の分数であるとすると 31=2m-1 かつ 1024 = 2k-1 1024210 これを解いて m=16,k=11 31 ゆえに, がこの数列の第n項であるとすると + + 1024 01 n = (1+2+22 + 2 + ・・・ + 2) + 16 ()の中は初項1,公比2の等 1.(210-1) 2-1 Ea + 16 = 1039 比数列の初項から第10項まで の和である。 6 章 数列 1 Sk= 2k-1 + 3 2k-1 + 5 2k-1 +・・・+ 2.2k-1-1 2-1 1 -1 {1+3+5++ (22-1-1)} 1 1 . 2k-1 ..2k-1{1+ (2.2k-1-1)}= 2′- 1 31 は第 11 群の16 番目の項であるから,この数列の初項から 1024 (2) 分母を2k-1とする分数は 2-1 個あるから,第ん群の末項の分子は 2.2k-1-1である。 ゆえに 第群の末頃は,第群 24-1 分数であるから,その 分子は m = 2k-1 を代入して 2.2k-1-1である。 1+3+ +... + (2.2k-1-1) 初項 1 公差 2 項数 2-1 の等差数列の和である。 に使う 31 1024 までの和は T = S + S2 + ・・・ + S10 + 1 + 1024 1024 3 31 +・・・+ 1024/ 1 =1+2+2+ ・・・ + 2 + (1+3+5+...+31) 0731-(210-1) 1024 + 2-1 1 1023 + 4 = 1 1 1024 2 4093 4 . ・16(1+31) 1 +2 +2 + ・・・ +2° は, 初項 1,公比2,項数 10 の等比 数列の和であり, 1 +3 +5 + ・・・ + 31 は, 初項1, 31, 項数 16 の等 差数列の和である。 (X)D (原題 攻略のカギ! Key 1 群数列は、第群に属する項数と, 第k群の第m項の式を考えよ ①番目のグループ (第群)に属する項数をんの式で表す。 ②k番目のグループ (第ん群)を取り出し, その第項をkとの式で表す。 1つの数列をいくつかのグループに分けて, その第n項や和を求めるときは,次の2つのことを考える。 S 147

解決済み 回答数: 1
数学 高校生

この問題の別解の解き方なんですが n🟰17のとき2分の1n(n-1)は272になると思うんですけどこれがn-1軍め の最後の番目ということですよね?そしたら273番目がn軍目の1番最初になり そこから302番ー273番をしても15にならないと思うんですがどこの考え方が間違っ... 続きを読む

奇こ (2) 差 (3) 452 基本 例 29 群数列の基本 n個の数を含むように分けるとき (1) 第n群の最初の奇数を求めよ。 (3)301は第何群の何番目に並ぶ数か。 奇数の数列を1/3,5/7, 9, 11/13, 15, 17, 19|21, このように、第 00000 (2)第n群の総和を求めよ。 [類 昭和大 p.439 基本事項 もとの数列 群数列では、次のように目 指針 数列を ある規則によっていくつかの 組 (群) に分けて考えるとき,これを群 数列という。 区切り れる [規則 る 区切りをとると もとの数列の 目すること群の最初の数が 群数列 がみえてくる 数列でいくと 目が ① もと ↓ ② 第 数列の式に代 見則 の個数は次のようになる。 上の例題は 群第1第2 第3群・・・・・・・・ 1 | 3,57,9,11| 第 (n-1) 群 第n群 初項 (n-1) 18 n個 公差2の 個数 1個 2個 3個 等差数列 11n(n-1)個 11n(n-1)+1番目の奇数 (1) 第k群の個数に注目する。 第k群にk 個の数を含むから,第 (n-1) 群の末頃ま でに{1+2+3++(n-1)} 個の奇数が 第1群 (1) 1個 3 77 ある。 よって、第n群の最初の項は, 奇数の数列 1, 3, 5, の 第2群 第3群 第4群 13, 15, 17, 19 第5群 21, 59 2個 9, 11 3個 4個 {1+2+3+......+(n-1)+1)番目の項で ある。 {(1+2+3+4)+1} 番目 検討 右のように、初めのいくつかの群で実験をしてみるのも有効である。 (2)第n群を1つの数列として考えると、求める総和は, 初項が (1) で求めた奇数 差が 2 項数nの等差数列の和となる。 (3) 第n群の最初の項をan とし,まず an≦301<ant となるnを見つける。 nに具 体的な数を代入して目安をつけるとよい。 CHART 群数列 数列の規則性を見つけ、区切りを入れる ② 第群の初項・ 項数に注目 (1) n≧2 のとき,第1群から第 (n-1) 群までにある奇数 第 (n-1) 群を考えるか 解答 の個数は 1+2+3+(n-1)=1/12 (n-1)n ら,n≧2という条件が つく。 よって,第n群の最初の奇数は (n-1)n+1番目の+1」 を忘れるな!!

解決済み 回答数: 1
数学 高校生

数Bの数列の質問です 聞きたいことは3つあります ①(1)の緑マーカーを引いている(2×2^(n-1)-1)はどうやって出てきたのか ②(2)の緑マーカーを引いている489項はどうやって出すのか ③(2)の黄色マーカーを引いているシグマの計算のやり方 この3つを教え... 続きを読む

例題 B1.29 群数列(2) ***** 2の累乗を分母とする既約分数を次のように並べた数列について, 1 1 3 2'4'4'8'8 5 13 3 71 5 15 ...... 8'8' 161604032 (1) 分母が2" となっている項の和を求めよ.xx (2) 初項から第1000項までの和を求めよ。 手大) 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 4個 いとか考える。S-8個目番 1個 2個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると、第群には、 分母が 2" の分数が 2"-1個あることがわかる.さらに,分子に着目すると、 (7) 11, 31, 3, 5, 71, 3, 5, 7, 9, 11, 13, 15 となっている 解答 (1) 分母が2である分数をまとめて第ん群とする数 列を考えると, ) 200 となり、分母が 2" の分数は 27-1個あり 11 31357 3 5 15 | 1 2 4'4 8'8'8'8 16'16'16' S1 TOS 16 32' 1個あり、分子は初 項1, 公差2の等差数列になっているから、その和 は, 等差数列の和 n(a+e) S を利用 2 どうやって出てきた 2n 2"=2"-25 (2) 各群の項数は, 1, 2, 4, 8, 16, ・・よりは、 1-(2-1) 第n群までの項数の和は、 2-1 1+3+5+・・・ +(2.2"-1-1)22-2 分子 1+3+5+...... ので、第1 +(2·2-1-1) 2"-1 (1+2・2"- '-1) 2 =2"-11022-2 第1000項が第何群に入 どうやって出す? 2°-1=511, 2-1=1023 より 第1000項は第 10群の第489項なので,求める和は第9群までの 和と第10群の第489項までの和となる -2 3 9770+ っているかをまず調べる。 1 22-2は初項 公比 224+ (2+2+1+20001027 2の等比数列の初項から 第9項までの和 よって, k=1 びじゃないのに 1 (29-1) F どうやって計算? 11 + .489.(1+977) 2-1 2102 511 4892 500753 より 初項 1.末項 977, = ++ 2 1024 1024 2月1 Focus 分数の群数列は分母, 分子に着目して見抜く 1+3+...... +977 は, 項数 489 等差数列の和 **) ついて、

解決済み 回答数: 1
数学 高校生

赤線以後のところの説明お願いたします なぜnを割るのですか? また求める和でΣn=20となる理由もわかりません

ues. 454 基本 例題 30 群数列の応用 Onsens 0000 ・の分数の数列について 1'2' 2 , 1 2 3 4 5 6 7 8 9 10 3'3 11 4'4'5'・・・・ 3'3'4'4'4 初項から第210項までの和を求めよ。 [類 東北学院大 ] 指針 分母が変わるところで区切りを入れて, 群数列として考える。 分母: 1|22|3, 3, 34, 4, 4,45, 1個 2個 3個 4個 .... 第n群には、分母がnの分数がn個あることがわかる。 分子: 12,34,5,6-7,8,9,10|11 ...... 分子は,初項 1, 公差1の等差数列である。 すなわち, もとの数列の項数と分子 は等しい。 まず, 第210項は第何群の何番目の数であるかを調べる。 分母が等しいものを群として,次のように区切って考える。 12 5 34 解答 12' 23 , 3'3 9 10 11 8 67 4' 4 45 第1群から第n群までの項数は 1 1+2+3+....+n=1n(n+1) 2 第210項が第n群に含まれるとすると 1/2(n-1)n<210≦1/12m(n+1) よって (n-1)n<420≦n(n+1) ① もとの数列の第項は 分子がんである。 また 第群は分母がんで、 個の数を含む。 ■これから、第九群の の数の分子は 11/n (n+1) 重要 例題 3 自然数 1, 2, 3. (1) 左からmi 然数をmを (2)150は左か るか。 指針 群数列 解答 (1) 左 のm (2) 15C 注目 並べられ 1|2, (1) ①の 左から 番目の (n-1)n は単調に増加し, 19・20=380, 20・21=420 である から,①を満たす自然数nは n=20 S また,第 210 項は分母が 20 である分数のうちで最後の数 である。 ここで,第n群に含まれるすべての数の和は ・20・21=210 1/171211n(n-1)+1}+(n-1)・1}÷7 = 1½n (n²+1) ÷ n = n2+1 2 2 ゆえに, 求める和は 20k2+1 20 1/20・21・41 2*²+1=1 (2² + 21 ) = 1 (20-21- +20) =1445 k=1 k=1 (2)150 122 < は 第12 は第n 群の数の分 13群 子の和→ 等差数列 n{2a+ (n-1)] }] また、 よっ 練習 ③ 30 2の累乗を分母とする既約分数を、次のように並べた数列 1 1 3 1 3 5 7 1 3 5 151 2' 4' 4' 8' 8' 8' 8' 16' 16' 16' ' 16' 32' について,第1項から第100項までの和を求めよ。 P.460 EX 置に 練習 自然数 ④ 31 (1) 左 数を (2)15

解決済み 回答数: 1
1/31