学年

教科

質問の種類

数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9f(m) で与えられる。この運動について次のものを求め、 し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) (0)-3 めよ。 (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ふたた P.314 基本事項 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。(んの変化量)÷(tの変化量)を断 算。 (イ) 2秒後の瞬間の速さを求めるには, 2秒後から2+6秒後までの平均の速さ 均変化率) を求め, 60のときの極限値を求めればよい。 つまり、微分係 f' (2) が t=2における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 は t=5 における微分係数 f' (5) である。 重要 例足 xの多項 る。 (1) f(x) (2) f(x 指針 ( ( 解答(1 (1) (ア) (49.2-4.9・22)(49・1-4.9・12) 2-1 =34.3(m/s) tがαから6まで変化す 解答 (イ) t秒後の瞬間の速さは,んの時刻 t に対する変化率 るときの関数f(t)の平 均変化率は f(b)-f(a) 7D dh b-a である。 んをt で微分すると =49-9.8t dh dt については、下の (1)=4 dt 求める瞬間の速さは, t=2として 49-9.8・2=29.4(m/s)=p 注意 参照。 '=49-9.8t と書いてもよいが、 (2) t秒後の球の半径は (10+t) cm である。 dt t秒後の球の体積を V cm とするとV=1(10+t V を tで微分して 求める変化率は,t=5として 4л(10+5)=900π (cm³/s) と書くと関数を 微分していることが式か ら伝わる。 =n(ax+b)"'(ax+b) 変数がx,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え (1+(1) 4 d=1/2x3(10+t) 2.1=4z (10+t) { (ax+b)"} ば、関数=f(t) の導関数はf(t), dh dt' dt df(1) などで表す。また,この導関数を求め ることを、変数を明示してん を tで微分するということがある。 練習 (1) 地上から真上に初速度 29.4m/s で投げ上げられた物体のt秒後の高さんは、 で与えられる。この運動に ④20

回答募集中 回答数: 0
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本 例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=191-4.9P(m)で与えられる。この運動について次のものを求めよ し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) 10 cm (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ただ p. 314 基本 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。 (んの変化量) (tの変化量) を計 算。 (イ)2秒後の瞬間の速さを求めるには 2秒後から2+6秒後までの平均の速さ 均変化率)を求め, 6 → 0 のときの極限値を求めればよい。 つまり、微分係数 f'(2) が t=2 における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 t=5 における微分係数 f' (5) である。 taから6まで変化す (1) (ア) (49.2-4.9.22)(49・1-4.9.12) 2-1 =34.3(m/s) 解答 (イ) t秒後の瞬間の速さはんの時刻 t に対する変化率 るときの関数f(t)の平 変化率は f(b)-fla dh b-a である。 hをtで微分すると =49-9.8t dh dt については,下の dt (1)-9 求める瞬間の速さは, t=2として 注意 参照。 '=49-9.8t 49-9.8・2=29.4(m/s)=p (2) t秒後の球の半径は (10+t) cm である。 と書いてもよいが, 3 t秒後の球の体積をVcm とするとV=1(10+t dV 4 V を tで微分して dt dv=7.3 ・3(10+t)2・1=4z(10+t) 求める変化率は,t=5として 4(10+5)=900(cm²/s) と書くと関数を 微分していることが式か ら伝わる。 { (ax+b)"}' =n(ax+b)"' (ax+b) 変数が x,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え dh d ば、関数=f(t) の導関数はf(t), dt' dt f(t) などで表す。また,この導関数を求め ることを,変数を明示してh を tで微分するということがある。

回答募集中 回答数: 0
数学 高校生

理解ができません(T ^ T)説明お願いします🙇🏻

_ っ= 上に49m で投げ上げられた物体の % 9P (m) で叶えられる> このBに2いでKe 還/8 は秒吉 om を意味する< 1 人から 2秒後までの平均の連さ SS 2人の 半径 10 cm の球がある。 毎秒1cm MM | き、球の体筑の5 秒後における導化率を求めよ。 W っ:かご7の=人時 えることができる。 ヵー Les 高きヵは時刻「の関数と考える wa 和 計We 平均の評き とは. 平均変化率 と同じこと。(ぁ の変化和)=(6の人 (の) ?秒後の時間の連さを求めるには。 2 秒後から2+2秒後までの補99ss 要化を求め、5 一 0 のときの極限値を求めればよい。つまり。 千時 7三? における瞬間の速さ である= (2) まず, 体積を時刻#の関数で表] (=5 におりる仙人人数(6) である。 間間ss > = 。 5 (D の (人2=4 四記19.9 58345(a) () /形後の時間の速さは, んの時刻に対する変化率であ | | | | これを ニア(の とすると 5人9 を#で役分すると 学ーg_osy 求める瞬間の速さは. /ニ2 として 9一9.8・2ニ29.4 (m/s) (2) /形後の球の半径は (10+/) cm である。 ?秒後の球の体積を cms とすると と3 陸 4 s リー全z(10+が g/ 4 ST を(で貞人して 2ーす500が 0+の"|4(egt97 ret 求める変化率は, 3として 4zQ0+5)ー900z (cm/s) 性 次数が 7の 伯g. ムーの のmkは アの 70 2 この才女を求めることを、 表才を 棚 gi' 9 示してんを』で微分するという

回答募集中 回答数: 0