学年

教科

質問の種類

数学 高校生

(3)の問題の青い線で何故円②なのでしょうか?解説お願いします🙇‍♂️

42 2円の交点を通る円 2x2+y^-2x+4y=0 ①, x2+y'+2x=1 ......② がある. 次の問いに答えよ. (1) ①,②は異なる2点で交わることを示せ. (2) ①,②の交点を P, Q とするとき, 2点 P, Q と点 (1, 0) を通 る円の方程式を求めよ. (3) 直線 PQ の方程式と弦 PQ の長さを求めよ. これが (10) を通るので -1+2k=0 よって, 求める円は 1 .. k= x² + y² −2x+4y+ 12 (x² + y²+2x−1)=0 .. (x-1)+(u+1)=280 (3) ③において, x2,y2 の項が消えるので, k=-1 : 4x-4y-1=0 ...... ④ 次に,円 ② の中心 (-1, 0) と直線④との距離をdとおくと, 精講 (1)2円が異なる2点で交わる条件は 「半径の差 <中心間の距離 <半径の和」 です. (数学ⅠA57) (2)38 の考え方を用いると, 2点P, Q を通る円は (x2+y²-2x+4y)+k(x2+y2+2x-1)=0 の形に表せます. (3)2点P,Qを通る直線も(2)と同様に (x2+y²-2x+4y)+k(x²+y'+2x-1)=0 と表せますが, 直線を表すためには,x', y' の項が消えなければならないの で, k=-1 と決まります. また, 円の弦の長さを求めるときは, 2点間の距 離の公式ではなく, 点と直線の距離 (34) 三平方の定理を使います. |-4-1| 5 d= √42+42 4√2 図より (1/2PQ)=(√2-d .. PQ²=4(2-25)-39 8 よって, PQ= /78 4 円② (-1,0) 1Q √2 注 (3)において, k=-1 ということは,①-② を計算したことにな ります。 ポイント 解 答 (1) ① より (x-1)+(y+2)²=5 ∴. 中心 (1,2), 半径 √5 ②より (x+1)+y^=2 ∴. 中心 (1,0), 半径 √2 中心間の距離=√2+2=√8 <3=2+1 <√5+√2 また,√5-√2 <3-1=2<√8 .. 半径の差<中心間の距離 <半径の和 よって, ①,②は異なる2点で交わる. (2) 2点P, Qを通る円は (x2+y²-2x+4y)+k(x2+y2+2.x-1)=0 ......③ とおける. 演習問題 42 2つの円x+y'+ax+by+c=0 と x2+y2+azx + by + cz = 0 が交点をもつとき (x+y+ax+by+ci)+k(x+y+azx+bzy+cz)=0 は k≠-1 のとき,2円の交点を通る円 k=-1 のとき,2円の交点を通る直線 2つの円x^2+y^2 と (x-1)+(y-1)²=4 は交点をもつこと を示し, その交点を通る直線の方程式を求めよ.

解決済み 回答数: 1
数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
1/175