学年

教科

質問の種類

数学 高校生

導関数の最大最小の問題です 最後の最大最小のまとめ方がなぜこうなっているのかが分かりません。x=2で最小値-4などはどこから来たのでしょうか。 教えて頂きたいのです よろしくお願いします🙇‍♀️

416 例題 234 関数の最大・最小〔5〕・・・係数に文字を含む よびそのときのxの値を求めよ。 a>0とする関数f(x)=x-3ax 0≦x≦3) の最大値と最小値, お 思考プロセス Re Action 関数の最大・最小は, 極値と端点での値を調べよ 例題228 f'(x)=3x-6ax=3x(x-2a) であり aの値が大きくなるとき, グラフ全体が平行移動するのではなく, 極小値をとるx (2a) が右側へ動いていく。 問題を分ける 最大値と最小値を同時に考えるのは難しいから, 分けて考える。 (極小となる点を 区間に含む 最小値 最大値 x f'(x) + f(x) > 0 0 極小となる点を 区間に含まない / ・・・・・ (最小値)=(極小値) /区間の両端での 値の大小を考える f'(x)=3x²2-6ax=3x(x-2a) f'(x) = 0 とすると x=0, 2a よって, f(x) の増減表は次のようになる。 YA 0 2a 0 + -4a³7 ゆえに,y=f(x)のグラフは右の図。 最小値について (ア) 3 <2a すなわちa> f(x)はx=3のとき 最小値 27-27a - f(x) は x = 24 のとき 最小値-4 3 12/2のとき 3 (イ) 20≦3 すなわちaso2 のとき *** /区間の両端での 値の大小を考える 境界となる 両端の値が等しいときを考える 0 U 0 -4a³ 2a x 2a 3 D YA O 2a N dara 2a a>0 より 2 > 0 S 極小となるx = 24 を区 間 0≦x≦3に含むかど うかで場合分けする。 3 245 = (- 次に, 最大値について f(x)=f(0) となるxの値は x-3ax² = 0 より x2(x-3a) = 0 よって (ア) 3 <3a すなわちa>1 のとき f(x)はx=0のとき 最大値 0 x = 0, 3a (イ) 3a = 3 すなわちα=1のとき f(x) は x = 0, 3のとき 最大値 0 (ウ) 34 <3 すなわちa <1のとき f(x)はx=3のとき 最大値 27-27a a=1のとき 1<a ≤ 3 2 3 2 R O <a のとき -4a³ ------ 0 3a 0 3a3 以上より, f(x) の最大値と最小値,およびそのときのxの 値は ( 8 (0<a<1のとき 2a のとき x=0で最大値 0 x 3.3g 3 x=3 で最大値 27-27a x=2で最小値-4c x = 0, 3 で最大値 0 x=2で最小値 4 x=2αで最小値-4α x=0で最大値 0 x=3で最小値 27-27a 最大値となり得る極大値 f (0) = 0 と等しい値をと るxの値を求める。 p.407 Go Ahead 16 の内 容を用いて, x = 3g を確 認できる。 (Svarar 1 aaa 0 2a 3a x=3g を区間0x3 に含むかどうかで場合分 けする。 (ア) (イ) の最大値は一致 するが、 最大値をとるx の値が異なるから, 分け て考える。 分かりやすいように, 最 後に, 最大値と最小値を まとめる。 Point... 定数を含む関数の最大・最小・ 例題234 において、 場合分けを考えるとき, 固定された区間 0≦x≦3に対して, グラ フを x = 24 や x=3α に着目し伸縮させて考 えた。 (最小値) (ア) 見方を変える 右の図のように、グラフを固定して,区間の端 点x=3を相対的に動かしても考えやすい。 (イ) (最大値) (ア)(イ) (ウ) HUN 0 32a 0 3 3a3 5章 14 導関数の応用 練習 234a>0とする。 関数 f(x)=x-342x (0 ≦x≦1) の最大値と最小値, およ びそのときのxの値を求めよ。 p.430 問題234 41

回答募集中 回答数: 0
数学 高校生

この問題の(1)と(2)の回答の赤いところからなぜその式になるのかが分かりません。降べきの順は分かりますが、まとめ方が意味不明です😵‍💫😵‍💫 1問でもいいので、丁寧に解説していただけると助かります!!

次の式を因数分解せよ。 (1) a(b+c)²+b(c+a)²+c(a+b)²-4abc (2) x(y²-2³)+y(2²-x²)+z(x² - y²) CHART & SOLUTION 対称式・交代式の因数分解 1つの文字について降べきの順に整理する どの文字についても次数は同じ。 どれか1つの文字に着目して整理する。 (1) a²+a+● (2) x2+x+ 解答 (1) a(b+c)²+b(c+a)²+c(a+b)²-4abc&& =(b+c)a²+{(b+c)2+2bc+2bc-4bc}a+bc2+b'c =a(b+c)2+b(c2+2ca+α²)+c(a²+2ab+b2)-4abc1 =(b+c)(a+b)(a+c) =(a+b)(b+c)(c+α) Sans@sto ‚a+ð ‚ð+o 〔(2) 鹿児島経大 ] ●a²+a+ =(b+c)a²+(b+c)a+bc(b+c) 04648 (b+c)が共通因数。 =(b+c){a²+(b+c)a+bc} caについて降べきの順に整 和 : a + b→b+c→c+a 差:a-b→ b-c→c-a 積 : ab→bc→ca 基本 14,15 15-016-5)= た い ←これを答えとしてもよい。 輪環の順に整理。 CFR (2) x(y²-2²)+y(22-x2)+2(x²-y2) othis (ds) +1d理する。 (- =(-y+z)x2+(y²-22)x+yz²-y'z =-(y-z)x2+(y+z)(y-z)x-yz xについて降べきの順に整 (y-z) =-(y-2)(x²-(y+z)x+yz} KOST & =-(y-z)(x-y)(x-2). これを答えとしてもよい。 =(x-y) (y-z) (z-x) -=d+"p-dp輪環の順に整理。 ●x²+x++ (y-z) が共通因数。 INFORMATION 3つの文字についての式は,なるべく輪環の順に書くようにすると 式が見やすく、書き落としや間違いを防ぐことができる。 8x TOG'S a. 1章 (6) D 2 因数分解

未解決 回答数: 1
数学 高校生

20と21の問題の途中式を教えてください🙌🏻´-できるだけ詳しくお願いします、、🙇🏻‍♀️‪‪´-

Bz) 3)(x+4) +2) 3 3)(3x+1) えたので, e 食料 (2) (a+b+c)²-(a−b-c)²-(a−b+c)²+(a+b_c\² 計算の順序を工夫したり、 項のまとめ方を工夫して、公式を利用する。 (1) 4つの因数の各定数項に注目すると,(-1)+3=(-2)+42 であるから。 (x-1)(x+3)(x-2)(x+4) と組み合わせて展開すると共通な式x+2xが現れ る。 (2) b+c=X, b-c=Y と考えると, 括弧の中はα と X, a とYの式で表すことが できる。 =(x+2x-3)(x+2x-8) 答 (1) 与式={(x-1)(x+3)}{(x-2)(x+4)} ={(x^²+2x)-3}{(x2+2x)-8} =(x+2x)*-11(x²+2x)+24 =x‘+4x+4x²-11x²-22x+24 =x*+4x³−7x²-22x+24 (2) 5={a+(b+c)}²-{a−(b+c)}²_{a~(b_c)}²+{a+(b−c)}² =a+2a(b+c)+(b+c)²-a²+2a(b+c)-(b+c)² =4a(b+c)+4a(b-c)=8ab 圏 □ 19 次の式を計算せよ。 *1)(x-1)(x-3)(x+1)(x+3) -a²+2a(b-c)-(b-c)²+a+2a(b-c)+(b-c)² 20 次の式を展開せよ。 (1) *(3) (a−b)(a+b)(a²+b²)(a²+b¹) *(4) (2x−y)³(2x+y)³ (5) (a+b)²(a−b)²(a²+a²b²+b¹)² *(6) (x+2)(x-2)(x²+2x+4)(x²-2x+4) *(7) (a+b+c)²+(a+b−c)²+(b+c¬a)²+(c+a−b)² 発展問題 (2)(x+2)(x+5)(x-4)(x-1) (x²+xy+y²)(x²−xy+y²)(x*—x²y²+y¹) (2)(x+y+1)(x+y-1)(x-y+1)(x-y-1) 第1章 数と式 セント 21 (1) α について整理してから展開する。 ごり □ 21 (1)(a+b+c)(a+b2+c^-ab-bc-ca)を展開せよ。 (2) (1) の結果を利用して, (x+y-1)(x^²-xy+y^+x+y+1)を展開せよ。

回答募集中 回答数: 0
1/4