学年

教科

質問の種類

数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

212. このような記述でも問題ないですかね?? 0<h<aは書いていないですが問題ないですよね? (r^2=a^2-h^2は書いていてr,a,hは当然全て>0なのだから同様のことは言えていると思いました。)

330 00000 基本例題 212 最大・最小の文章題(微分利用) 類 群馬大 半径aの球に内接する円柱の体積の最大値を求めよ。 また,そのときの円柱の高 基本 211 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 AM-* ① 変数を決め、その変域を調べる。 [②]最大値を求める量(ここでは円柱の体積), 変数の式で表す。 ③3 ②2 の関数の最大値を求める。なお,この問題では、求める量が,変数の3次式で表 されるから,最大値を求めるのに導関数を用いて増減を調べる。 無 なお,直ちに1つの文字で表すことは難しいから,わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 ならば、方程式 #SEN 計算がらくになるように 2h とする。 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=a²-h² 0 <2h<2aから 0<h<a Fo 円柱の体積を Vとすると V=лr² 2h=2(a²-h²)h =-2π(h-a²h) Vをんで微分すると V'=-2π (3h²-α²) =-2π(√3h+a)(√√3 h-a) 0くん <a において, V'=0となる a =1/3のときである。 のは,h= ゆえに,0くん<a におけるVの増 減表は,右のようになる。 したがって, V はん= a √3 よって体積の最大値 次回数でも学んだ h V' 2T V 4√3 9 のとき最大となる。 9-m- 0 ... h= a =1/3のとき,円柱の高さは 2 - 2√3 √3 a 3 -ла³, そのときの円柱の高さ 23 3 a *** 2x(a²-3).-4√3 a /3 9 + a √√3 0 極大 練習 ②212 底面の半径,および側面積を求めよ。 [R a 半径1の球に内接する直円錐で, その側面積が最大 三平方の定理=y(1) 変数の変域を確認。 atla31 82x25- [S- (円柱の体積) = (底面積)×(高さ) dV dh をV' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後,本書の増減表は,こ の方針で書く。 12h 12π(a²-h²)h に対し, その高さ,

回答募集中 回答数: 0