学年

教科

質問の種類

数学 高校生

194の問題がどうしてもわからないので解説お願いします💦どっちかだけでも大丈夫です!!

例題切り取る線分の長さ 47 直線 x+y-1=0 ①が円 x2+y2=4 ②によって切り取られ ある線分の長さと, 線分の中点の座標を求めよ。 解答 右の図のように、切り取られる線分を AB, 線分 の中点をMとする。 円②の半径は2であるから, △OAB は OA=OB=2 の二等辺三角形であり ∠OMA=90° OM は,円②の中心 (0, 0) 直線 ①の距離で A 12 (2) 2 M -2 O * 2x 2. B |-1| 1 あるから OM= = √12+12 2 よって AM=√OA2-OM2= = 22. /7/14 = = -2 したがって, 求める線分の長さは AB=2AM=√14 答 また、線分の中点M は, 円 ②の中心 (0, 0) から直線 ①に引いた垂線と, 直線 ①との交点である。 この垂線の方程式は y=x ...... ③ ①③を解くとx=1/2x=/12/2 1 よって, 線分の中点の座標は 谷 2 2 [参考] 線分の中点のx座標は,次のようにして求めることもできる。 ①,②からyを消去して 2x²-2x-3=0 第3章 図形と方程式 この方程式の解をα, β とすると,解と係数の関係により α+β=1 α+B_1 線分の両端のx座標はα, βであるから, 線分の中点のx座標は 2 B 194 直線 y=2x+5 が、 次の円によって切り取られる線分の長さを求めよ。 また、その線分の中点の座標を求めよ。 例題 47 *(1)x2+y2=16 (2)(x-3)+(v-1)=25

回答募集中 回答数: 0
数学 高校生

(2) αは1の6乗根のひとつとありますがどこでそう分かりますか?6乗根のひとつはzじゃないのですか?

C2-48 (396) 第5章 複素数平面 Think 題 C2.22 単位円に内接する正多角形 複素数平面上において, 原点を中心とする半径 1の円に内接する正六角形の頂点を表す複素数を, 左回りに Z1 Z2 Z3 Z4, 25, 26 とする. y 23 24 O また,a=cosisin とする. **** 2ドモアブルの定理 (2)(1)よりは1の6乗根の1つであり. 1, a, a, a, a, a が 2-1=0の解となるから、 z-1=(z-1)(za)(za)(za)(za)(za) (397) p. C2-38 例題 C2.19 注)参照 y4 02 a 3 このとき 次の問いに答えよ. (1) 21+2+2+2+25 +26 の値を求めよ. 2 25 (2)(1-α)(1-α)(1-α) (1-α') (1-α)=6であることを証明せよ。 考え方 Z1,Z2,Z3, 24, 25, 26 は正六角形の頂点であり,この 6点は,単位円周上の6等分点である つまり,点2」を原点のまわりにだけ回転させると、 とおける. ......② a -1 0 一方、 2-1=(z-1)(z+2+2+2+z+1)③ (人監事金) である.ここで, ② ③より. (z-1)(za)(za)(za)(za)(za) =(z-1)(2+2+2+2+2+1) であるから! (za)(za)(za)(za)(za) =2+2+2+2+z+1 となる. これは,z についての恒等式であるから, z=1 を両 辺に代入すると, a a³ 22に移る。 同様に,それぞれの点を原点O のまわりに匹 だけ回転させると, 22→Z3Z3ZZ → Z5, 2s → Z6 にそれぞれ移る+0800 (p.C2-38 例題 C2.19 注》 参照) (1-α) (1-α) (1-α) (1-α) (1-α°)=6 が成り立つ モアブルの Focus |解答 (1) Z1・・・・・, Z6 は単位円周上の6等分点である. 2π また, α=COS- +isin- は、点zを原点のまわり n www 今だけ回転させる複素数であるから, 2π a=cos +isin とすると,単位円周をn 等分する点は, n 1, α, a, α^-' と表される また, C2-49 第5章 22=Qz1 23=αz2=2z1 26=025=021 となるので, 21+2+2+2+2+26 =z₁+azi+az₁+a³z₁+a'z₁+az₁...... z-1=(z-1)(z -α) (z -α^)......(z-a-l) 注)(1-α) (1-α²) (1-α) (1-α) (1-α)=6 より 両辺の絶対値をとると. ( (1-α) (1-α) (1-α²) (1-α) (1-α)|=|1-α||1-^||1-'||1-α '||1-α| =6 と なるこの式の図形的な意味を考えてみよう. 単位円周を6等分する点を A (1) A(a), 30 ①は,初項 z1, 公比αの等比数列の初項から第6項ま での和である. 初項 Z1, 公比 α (天丸) Sale Ba (αキ1) の等比数 A2(2), As(a), A(a), As(α) とすると, 単位円の弦の長さの積 AAAA2A(A3A)AAAs=6 であることを表している. A(a) A(a) As(a³) MAD (1) 0 α≠1 より 1-a となる. ここで, よって, 21+22+2+2+25+26=21 (1-0) a²= (cos +isin 77° =cos2n+isin2π =1 *#J 21+2+2+2+25+26=0 2 (1) 1200+ 2 (6) 列の初項から第 n項までの和は, z₁(1-a") 1-a このことは,練習 C2-22 の(2)のとおり,単位円周を 等分する点についても成り立つ つまり半径1の 円に内接する正n角形の1頂点から、他の各頂点に 引いた線分の長さの積はnになる. A(a) As(a) 練習 02.22 接する正五角形の頂点を表す複素数を、左回りに21.2. *** 23.…………… とする。また a=cos 2+isin 2 とする. n n (1)+22+2s+…+2=0であることを証明せよ。 (2)(1-α) (1-α²) (1-α)・・・・(1-α"-1)=nであることを (例)証明せよ. 複素数平面上において原点を中心とする半径1の円に 22 21 -1 0 1 x 12月 B1 B2 C1 (北海道大改) p.C2-5124 G2

解決済み 回答数: 1