学年

教科

質問の種類

数学 高校生

ア〜ウはどのように求めればいいんですか?💦

下の表は、A~Jの10人の生徒に10点満点の2種類のテスト ① ② を行った結果と、その平 均値である。ただし,表中のb,cは0<b≧c を満たす自然数である。 A B C D E F G H I J 7 8 6 3 5 10 8 8 6 9 2 5 2 1 1 6 3 4 6 (1) a の値を求めよ。 また,b,cの値の組をすべて求めよ。 (2) 太郎さんと花子さんは次の問題が宿題として出された。 生徒 テスト ① (点) テスト② (点) 番号で答えよ。ただし, 同じものを繰り返し選んでもよい。 ① 小さくなる ②大きくなる ③ 変わらない テス- 問題 Cのテスト②の得点が4点に,さらに、Hのテスト②の得点が2点に変更になったと仮定 すると,この変更の前後で10人のテスト①とテスト②の得点の相関係数はどのように変化 するか調べよ。 (点) 10 C この問題について先生と太郎さん、花子さんの3人が会話をしている。 太郎 : 6,cの値の組は1通りではないので,それぞれ相関係数を具体的に計算するのは大変だ。 先生: そうだね。 もっと簡単に相関係数の変化の様子を調べる方法はないか考えてみよう。 花子:テスト①とテスト②の得点の散布図を利用して考えられないでしょうか。 先生: いい考えだね。 太郎: まず、CとHの得点の変更前について A から Hの8人のテスト①とテスト②の得点を散布図 に示すと、図のようになります。 さらに, I, J のテスト①とテスト②の得点を表す点を,この 散布図を使って考えるんだね。 先生:図に,テスト①とテスト②の平均値を表す2本 の直線l1,l2 をかき加えて, 4つの区域に分け てみましょう。 そして, CとHの得点の変更後、 この散布図において, その変更した得点を表す 点の移動の様子を考えれば, b,cの値の組によ らず問題の答えがわかるんじゃないかな。 太郎:変更前と比べると,変更後では、10人のテスト①とテスト②の得点の共分散は (ア) ことがわかります。 テスト①の得点の分散は変わらず, テスト②の得点の分 散は (イ)ので,テスト①とテスト②の得点の相関係数は (ウ) んですね。 に当てはまるものとして正しいものを、次の①~③のうちから一つずつ選び、 9 8 3 2 1 0 平均値 a C 3 012345678 9 10 (点) テスト ①

回答募集中 回答数: 0
数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
数学 高校生

193.3 この記述でも問題ないですよね??

304 00000 基本例題 193 導関数と微分係数 (1) 関数f(x)=2x+3x2-8x について, x=-2における微分係数を求めよ。 (2) 2次関数f(x) が次の条件を満たすとき, f(x) を求めよ。 A (1)=-3. f' (1)=-1, f'(0)=3 (3) 2次関数f(x)=x2+ax+bが2f(x)=(x+1)f'(x)+6を満たすとき,定数の b の値を求めよ。 基本191) Webs 指針▷ (1) x=q における微分係数 f'(a) は,導関数 f'(x) を求めて, それに x = a を代入する。 簡単に求められる。 f(x)は2次関数であるから, f(x)=ax²+bx+cとする。アーム ②2 導関数 f'(x) を求め, 条件をa, b, c で表す。(笑) ③3 a,b,c の連立方程式を解く。 (3) 導関数 f'(x) を求め,条件の等式に代入する。一(d+xp(s+xmi= →xについての恒等式であることから, α, 6の値が求められる。 (2) 解答 (1) f'(x)=2.3x2+3・2x-8・1=6x²+6x-8 したがって f'(-2)=6・(-2)^+6・(-2)-8 =4 J3 (0+20) (2) f(x)=ax2+bx+c (a≠0) とすると (1) f'(x)=2ax+b() a+b+c=-3 2a+b=-1 f(1)=-3 から f' (1)=-1から f'(0)=3 から これを解いて したがって (3) f(x)=x2+ax+bから 与えられた等式に代入すると b=3 a=-2,6=3, c=-4 f(x)=-2x2+33-4 f'(x)=2x+α 1-2x3. = (d+xb) = ( 2(x2+ax+b)=(x+1)(2x+α)+6 整理して 2x2+2ax+26=2x2+(a+2)x+a+6 これがxについての恒等式であるから、両辺の係数を比較 すると 2a=a+2, 2b=a+6 これを解いて a=2, b=4 ^²(6+x)) = (+2) -3r²-12r+5@r=1 / tu TUALET 微分係数 f'(a) の求め方 [1] 定義 (p.296 [①])に従って 求める [2] 導関数 f'(x) を求めて、 x=a を代入する。 の2通りがある。 例題 1931) では [2] の方法の方が早い。 なお、定義に従うなら f(-2+h)-f(-2) h f'(-2)=lim または f'(-2)=lim として計算。 ho x-2 f(x) f(-2) x-(-2) 係数比較法。 1

回答募集中 回答数: 0
数学 高校生

写真のところの式変形はどのように行なっているんですか?

う 10 確率の最大値 赤, 青, 黄3組のカードがある。 各組は10枚ずつで,それぞれ1から10までの番号がひとつず つ書かれている.この30枚のカードの中からん枚 (4≦k≦10) を取り出すとき, 2枚だけが同じ番 で残りの(k-2) 枚はすべて異なる番号が書かれている確率をp (k) とする. ( 4≦k≦9) を求めよ. p(k+1) (1) p(k) (2) (k) (4≦k≦10) が最大となるkを求めよ. (福岡教大/一部省略) 確率の最大値は隣どうしを比較 確率力 (k) の中で最大の値 (または最大値を与える) を求める 問題では,隣どうし [pkpk+1)] を比較して増加する [p(k)≦p(k+1)] ようなんの範囲を求 める. p(k)とp(k+1) の大小を比較すればよいのであるが, p(k) とp(k+1)は似た形をしているの 力(k+1) で を計算すると約分されて式が簡単になることが多い. p (k) である. -≧1⇔p (k)≦p (k+1) 解答量 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30C通りあり,これ らは同様に確からしい。このうちで題意を満たすものは、同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方が 3 C2 通り, 異なる番号 (-2)枚について番号の選び方が gk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. よって, p(k)= 10.3・9Ck-2・3k-2 30 Ck p(k+1) 9Ck-1.3k-1 p(k) 30! 30 Ck 30Ck+1 9Ck-2.3k-2 (k+1)! (29-k)! 30! k! (30-k)! (k-1)! (10-k)! 100% 9! p(k+1) p (k) となり, p (k) が最大となるには 6. 18 -≧ 1⇔ SE p (k+1) p (k) (k-2)! (11-k)! 9! 3 (k+1) (11-k) -≧1 (k-1) (30-k) -3 3(k+1) (11-k) (-1)(30) (2) p(k)≦p(k+1) ⇔ ⇔3(k+1)(11-k)≧(k-1)(30-k)⇔k (2k+1)≦63..... 5·(2.5+1)<636・ (2・6+1) であるから, ①を満たすんはk=4,5で①の等 kは4~9の整数 号は成立しない . よって p(4) <p (5) <p(6), p(6) > p (7) > p (8) > p (9) > p (10) 10.3 を約分 YouTube & Fa 1 順に. 1 30Ck+1' 30Ck 9Ck-1. 9Ck-2 最後の3は3-1と3-2 を約分. p(k)>0, p(k+1) >0 10 演習題 ( 解答はp.50 ) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて,当たりかはずれか を確認したのち,もとに戻す試行をTとする。 試行Tを当たりくじが3回出るまで繰り 返すとき,ちょうど2回目で終わる確率をp (n) とする。 改 (1) 試行Tを5回繰り返したとき,当たりが2回である確率を求めよ. (2) n≧3として、p(n) を求めよ. (3) p(n) が最大となるnを求めよ. ( 芝浦工大) 10.11.12 回目が3回目の当たり なので,それまでに当た りは2回 (3) は例題と 同じ手法を使う. 43

回答募集中 回答数: 0
数学 高校生

赤丸の部分がどうしてそうなるのか教えてください!

ケ B -an. CA b INQ に一直線上にない 3点 0, A, B があり, a = OA,6= OB とおく。 |a| = 3,|6| = 2, la +6=4 とする。 比の形で解答する場合, 最も簡単な自然数の比で答えよ。 内臓の値は、京・五= Key 2 であるから, 線分ABの長さは, AB=ウエである。 [オ] [カキ] である。 OP = p として, 点Pが関係式p=sa+tb, 4s + 3t ≦6,s ≧0,c≧0 を満たしながら動く。 OC = a, OD= また、△OAB の面積Sは、S= REB サ 点Pの存在する領域の面積は Fous 2.3. 10Q=gとして、点Qが関係式 13g-24-64-6 を満たしながら動く。 このとき, 点Qは線分ABを (1) +6=4の両辺を2乗して また, |a| = 3, |6| = 2 を代入して 13+24万 = 16 より OE よって, 内部を動く。 また、その面積は OC= = 16 とおくとき, 点Pは △OCD の周および内部にあるから, シスセ lal² + 2a·b+|b|² = 16 m² 20 ³+*>«m 3 → 攻略のカギ! 2 タチに内分する点Eを中心とする, 半径 3 2 (3) 139-2a-6 ≤à-bkb a. b = ŠTAŠTU ゆえに |AB"=|AB|^=|6-a|= |a|²-20・1+161°= AB > 0 であるから AB=√10 また, △OAB の面積Sは 計算 (2) p = sa+tb, 4s +3t ≦ 6, s ≧0, t≧0より 2s 2s 2s / 3 7 = ²/3 (20) + (26) ²/5 + 1/ 51, 3320, 20 3= / 2 3 2 a, OD = 26 とおくと, 点Pは OCDの周および である。 = 3+(税) 2 BA √10 3 3 = x2 x S = 3S 10. 30. q 1 S = √√|a|²|6|² - (a·b)² = ³√/15 2 である。 3 2a+b 20+6 とおくと √10 3 3 ゆえに,点Qは, 線分ABを1:2に内分する点 √10 Eを中心とする, 半径 の円の周および内部を 3 2a+b 3 9/15 4 |0Q-OE| ≦ 3 A =10 là ơi 3 [ツテ 'B 0 B の円の周および内部を動く。 4s + 3t と 6 の両辺を6で割る 2s t 3 2 + ≦1 2s よって、25と1/1/3を係数とす LOH る。 A EQ ≤ √10 3 KeV ④10P = SOA+tOB, stt1, s ≧ 0, t≧0 は, OAB の周および内部とせよ。 3点 0, A,Bが一直線上にないとき, OP = SOA+tOB について B②

回答募集中 回答数: 0