学年

教科

質問の種類

数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1
数学 高校生

(1)について質問です。 どうして判別式Dは0以上になるのでしょうか? 2つの解と書かれているので重解の場合は含まれないと思いました。 重解の場合も含めていいのでしょうか?

3 基本 52 2次方程式の解の存在範囲 ①①①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように,定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく, 他の解は3より小さい。 p.87 基本事項 89 指針 2次方程式x²-2px+p+2=0の2つの解をα,βとする。 (1) 2つの解がともに1より大きい。→α-1>0 かつβ-1>0 (2)1つの解は3より大きく、他の解は3より小さい。 → α-3 と β-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα, βとし, 判別解 2次関数 解答 別式をDとする。 D =(−p)² −(p+2)= p²−p−2=(p+1)(p−2) 4 解と係数の関係から α+β=2p, aβ=p+2 (1) α>1,β>1であるための条件は D≧ かつ (α-1)+(β-1)>0 かつ (α-1) (β-1) > 0 (p+1)(p-2)≥0 f(x)=x-2px+p+2 のグラフを利用する。 (1) 0(+1)(p-2)0. 軸について x=p > 1, f(1)=3-p>0 から2≦p<3 YA x=py=f(x) D 0 から よって p≦-1,2≦p ① (α-1)+(β-1)>0 すなわち α+β-2>0 から 2p-2>0 よって p>1 ...... ② 3-p +α P 0 1 B x (α-1) (−1)>0 すなわち αβ-(a+β) +1>0 から p+2-2p+1> 0 よって p<3 ...... 求める』の値の範囲は, 1, 2, ③の共通範囲をとって 2≦p<3 ② ① 1 2 3 Þ 2 2章 解と係数の関係、解の存在範囲 (2) f(3)=11-5p<0から 11 p>1

解決済み 回答数: 1