学年

教科

質問の種類

数学 高校生

(2)の数直線のとこで3a−2/4はなんで⚪︎なんですか⚫︎で表されるんじゃないんですか?

68 基本 例題 36 1次不等式の整数解 (1) (1)不等式 5x-7<2x+5を満たす自然数xの値をすべて求めよ。 3a-2 (2) 不等式 x <- 4 の範囲を求めよ。 000 を満たすxの最大の整数値が5であるとき、 定数αの値 指針 (1) まず, 不等式を解く。 その解の中から条件に適するもの (自然数) を選ぶ。 (2) 問題の条件を 数直線上で表すと、 右の図のようにな 基本34 基本 kk 5-x す整数 6 3a-2 x 指針 4 る。 のの 3a-2 4 を示す点の位置を考え、問題の条 件を満たす範囲を求める ▼自然数=正の整数 (1) 不等式から 3x<12 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 左 3a-2 (2)x< 4 を満たすxの最大の整数値が5であるから 1 2 3 4 * 解答 5 <- 3a-2 4 ≤6.. ...... (*) ara (st 4 3a-2=5のとき,不等 (0< 式は x<5 で,条件を満 3a-2 5- ・から 20<3a-2 4 たさない。J って、22 3a-2 4 よって a> ① =6のとき、不等 e>x 3 3a-2 8>* 式はx<6で,条件を満 ≦6から3a-2≦24 たす。 4 TO ① 26 よって as ② (S) 3 ① ② の共通範囲を求めて 22 51 3a-2 6 x 26 各辺に4を掛けて 20<3a-2≦24 各辺に2を加えて 22<3a≦26 22 26 各辺を3で割って <a≤ 3 3 注意 (*)は,次のようにして解いてもよい。 表す図 3 <a≤ 3 OSI ① わる。 検討 (22) >I 3 23 26 a

未解決 回答数: 1
数学 高校生

サシスセがわかりません (5.5)が最大になるのですがなぜですか?どういうことですか?

原料 A, B, C を使って製品 P, Q を作る企画が立ち上がったので、次の (a)~(d)の条件のもとで、 得られる利益のシミュレーションをしたい Pを1台作るのに, A, B, C をそれぞれ3kg, 1kg, 1kg 使う。 (b)Qを1台作るのに, A, B, C をそれぞれ1kg, 2kg 1kg 使う。 (e) A, B, Cは1日につき, それぞれ 20kg 16kg 10kgまで使用できる。 (d) P, Qの1台あたりの利益は, それぞれ5万円, 4万円とする。 いま, P,Qを1日あたり,それぞれx台, y台作る。 ただし, x, yは0以上の整数とする。この とき、条件(a)~(c)を不等式で表すと ア x+ys イウ x+1 I y オカ lxty≧キク が成り立つ。このとき, 1日の総利益を万円とする。 (1)k=ケ x+ ay で, kの最大値はサシ 万円である。 これは,Pをス 台,Qをセ 台作るときである。 (2) 新しい戦略を探るために, Pの1台あたりの利益を4万円 (a>0) として考える。 (i)(1)と同じくPをス台, Qをセ台作ることで,kが最大になるようなαの値の範囲 は ソ Sas タチ である。 (ii) a>+ となったときは,Pを ツ ]台,Qをテ台作ることに変更すれば,k を最大 にでき,最大値はト α+ナ (万円) になる。 また、この変更により, (i)のPを ス ]台, Qをセ台で作り続けた場合に比べ, 1日の総 利益がαニヌ (万円) 増えることがわかる。 0 (20)

未解決 回答数: 0