学年

教科

質問の種類

数学 高校生

n群が含む項数は2^n-1だから(2)2^k-1ではなく2^k-2ではないのですか?なぜこうなるのか教えてください。

384 基本例題 23 群数列の基本 1から順に自然数を並べて,下のように1個,2個 4個, うに群に分ける。 ただし,第n群が含む数の個数は2個である。 1/2, 3/4, 5, 6, 7/8, (1) 第5群の初めの数と終わりの数を求めよ。 (2) 第n群に含まれる数の総和を求めよ。 CHART & SOLUTION 群数列の基本 第群の最初の項や項数に注目 例題のように、群に分けられた数列を 群数 列という。 (1) 第4群の末頃までの項の総数をNと 区切りを入れる と分け方の規則 がみえてくる ...... k=1 解答 1+2+2+2=15 (1) 第4群の末項までの項の総数は 第5群の末頃までの項の総数は よって、 第5群の初めの数は 16, 終わりの数は31 1+2+2²+2³+2¹=31 (2) n≧2のとき,第 (n-1) 群の末頃までの項の総数は (-16) E 2²-1-2-1-1 n-1 2-1 =2n-1-1 ゆえに,第n群の初めの数は (2'-'-1)+1 すなわち 27-1 これは n=1のときにも成り立つ。 “ よって、第群に含まれる数の総和は,初項が2"-1, 公差 が 1 項数が27-1 の等差数列の和となるから 求める和は 1/1・2"-1(2・2"^'+(2"''-1)・1}=2"-2(3・2"--1) もとの数列 類 京都産大] となるよ 群数列 すると, 第5群の初めの数は, 自然数の列の第 (N+1) 項である。 また, 自然数の列の第 項の数はとなる。 (2) 連続する自然数の和であるから公差1の等差数列の和で,あとは初項と項数がわか ればよい。初項は (1) と同様にして求まる。 項数は問題文から,すぐにわかる。 区切りをとると もとの数列の規 則がみえてくる EAST C 重要 24 n-1 2-1 は,初項1,公比 A=1 2の等比数列の初項か ら第 (n-1)項までの和。 別解 第n群の終わりの数 は2-1であるから、私は 11/12.2°-12"-' + (2^-1 = 2²-²(3-2-¹-1) PRACTICE 23② 正の奇数の列を次のように,第n群が (2n-1) 個の奇数を含むように分ける。 1/3,5,79, 11. 13 15 1710 辞各 群 各 群

回答募集中 回答数: 0
数学 高校生

明日定期テストです😭😭😭😭😭初項なんで10以上なのかだけ分かりません💦それ以外は分かります👌🏻💓

例題 B1.6 2つの等差数列に共通な数列 初項4, 公差3の等差数列{an} と, 初項 200, 公差 -5 の等差数列{6²} がある. 数列{an} と数列{bn}の共通項を, 小さい方から順に並べてでき る数列{C}の一般項と総和を求めよ. 考え方 解答1 |解答 1 数列{an}と数列{bn}の正の項を小さい順に並べた数列{d} を書き出すと,数列 {cm}の初項がみつかり、数列{cm} の規則性もわかる. 解答2 (数列{an}の第l項)=(数列{bn}の第m項)として、自然数 em の関係式を 求め, l, m のいずれかを自然数kで表す. {an}: 4,7, 10 13 16, 19,222528, 数列{bn}の正の項を小さい順に並べた数列{an}は, {d}:5,10,15, 20 25, 30, M よって, 共通項の数列{cm}の初項は10 数列{an}の公差は 3. 数列{dn} の公差は5であるから. 数列{cm}は3と5の最小公倍数 15 を公差とする等差数 列である。 よって、数列{cn}の一般項は, cn=10+(n-1)×15=15n-5 また. 10≦ch 200 より. 10≦15-5≦200 41 したがって、1≦ns 4 より n=1, 2, ...... 13 よって、数列{cm} の総和は, ARRE 1/12 13{2×10+(13-1)×15}=1300 解答2 =4+(n-1)×3−2 an=4+(n-1)-3 =3n+1 bn=200+(n-1)・(-5) =-5n+205 b"> 0 となるnの値は, n≤40 より. 数列 {dm}は. d=b=5 で 公差は5 第8章 { cm} は初項c=10 以上, {6²}の初項 200 以下であ る。 |S₁=n(2a +(n-1)d}

回答募集中 回答数: 0